On Invariant Semisymmetric Connections on Three-Dimensional Non-Unimodular Lie Groups with the Metric of the Ricci Soliton

УДК 514.76

  • D.V. Vylegzhanin Belarusian State University (Minsk, Belarus) Email: Vylegzhanin@bsu.by
  • P.N. Klepikov Altai State University (Barnaul, Russia) Email: askingnetbarnaul@gmail.com
  • E.D. Rodionov Altai State University (Barnaul, Russia) Email: edr2002@mail.ru
  • O.P. Khromova Altai State University (Barnaul, Russia) Email: khromova.olesya@gmail.com
Keywords: semisymmetric connections, invariant Ricci solitons, Lie groups, left–invariant Riemannian metrics

Abstract

Metric connections with vector torsion, or semisymmetric connections, were first discovered by E. Cartan. They are a natural generalization of the Levi-Civita connection. The properties of such connections and the basic tensor fields were investigated by I. Agrikola, K. Yano, and other mathematicians.

Ricci solitons are the solution to the Ricci flow and a natural generalization of Einstein's metrics. In the general case, they were investigated by many mathematicians, which was reflected in the reviews by H.-D. Cao, R.M. Aroyo — R. Lafuente. This question is best studied in the case of trivial Ricci solitons, or Einstein metrics, as well as the homogeneous Riemannian case.

This paper investigates semisymmetric connections on three-dimensional Lie groups with the metric of an invariant Ricci soliton. A classification of these connections on three-dimensional non-unimodularLie groups with the left-invariant Riemannian metric of the Ricci soliton is obtained. It is proved that there are nontrivial invariant semisymmetric connections in this case. In addition, it is shown that there are nontrivial invariant Ricci solitons.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

D.V. Vylegzhanin, Belarusian State University (Minsk, Belarus)

кандидат физико-математических наук, доцент кафедры геометрии, топологии и методики преподавания математики

P.N. Klepikov, Altai State University (Barnaul, Russia)

преподаватель кафедры математического анализа

E.D. Rodionov, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, профессор кафедры математического анализа

O.P. Khromova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа

References

Cartan E. Sur les varietes a connexion affine et la theorie de la relativite generalisee (deuxieme partie) // Ann. Ecole Norm. Sup. 1925. Vol. 42.

Yano K. On semi-symmetric metric connection // Revue Roumame de Math. Pure et Appliquees. 1970. Vol. 15.

Agricola I., Kraus M. Manifolds with vectorial torsion // Differential Geometry and its Applications. 2016. Vol. 46.

Muniraja G. Manifolds Admitting a Semi-Symmetric Metric Connection and a Generalization of Schur’s Theorem // Int. J. Contemp. Math. Sci. 2008. Vol. 3. № 25.

Agricola I., Thier C. The Geodesics of Metric Connections with Vectorial Torsion // Annals of Global Analysis and Geometry. 2004. Vol. 26.

Родионов Е.Д., Славский В.В., Хромова О.П. О секционной кривизне метрических связностей с векторным кручением // Известия Алт. гос. ун-та. 2020. № 1(111) DOI: 10.14258/izvasu(2020)1-21.

Yilmaz H.B., Zengin F.O., Uysal. S.A. On a Semi Symmetric Metric Connection with a Special Condition on a Riemannian Manifold // European journal of pure and applied mathematics. 2011. Is. 2. Vol. 4.

Zengin F.O., Demirbag S.A., Uysal S.A., Yilmaz H.B. Some vector fields on a riemannian manifold with semi-symmetric metric connection // Bulletin of the Iranian Mathematical Society. 2012. Is. 2. Vol. 38.

Barua B., Ray A. Kr. Some properties of a semi-symmetric metric connection in a Riemannian manifold // Indian J. pure appl. Math. 1985. Vol. 16. № 7.

De U.C., De B.K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. 1995. Vol. 54.

Cerbo L.F. Generic properties of homogeneous Ricci solitons // Adv. Geom. 2014. Is. 2. Vol. 14.

Клепиков П.Н., Оскорбин Д.Н. Однородные инвариантные солионы Риччи на четырехмерных группах Ли // Известия Алт. гос. ун-та. 2015. № 1/2(85) DOI: 10.14258/izvasu(2015)1.2-21.

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Уравнение Эйнштейна на трехмерных метрических группах Ли с векторным кручением // Итоги науки и техники. Серия : Современная математика и ее приложения. Тематические обзоры. 2020. Т. 181. № 3. DOI: 10.36535/0233-6723-2020181-41-53.

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Уравнение Эйнштейна на трехмерных локально симметрических (псевдо)римановых многообразиях с векторным кручением // Математические заметки СВФУ. 2019. Т. 26. № 4. DOI:10.25587/SVFU.2019.49.61.003.

Milnor J. Curvatures of left invariant metrics on Lie groups // Adv. Math. 1976. Vol. 21.

Published
2021-09-10
How to Cite
Vylegzhanin D., Klepikov P., Rodionov E., Khromova O. On Invariant Semisymmetric Connections on Three-Dimensional Non-Unimodular Lie Groups with the Metric of the Ricci Soliton // Izvestiya of Altai State University, 2021, № 4(120). P. 86-90 DOI: 10.14258/izvasu(2021)4-13. URL: http://izvestiya.asu.ru/article/view/%282021%294-13.

Most read articles by the same author(s)