Three-Dimensional Locally Symmetric (Pseudo)Riemannian Manifolds with Vectorial Torsion and Zero Curvature Tensor

УДК 514.764.2

  • P.N. Klepikov Altai State University (Barnaul, Russia) Email: klepikov.math@gmail.com
  • E.D. Rodionov Altai State University (Barnaul, Russia) Email: edr2002@mail.ru
  • O.P. Khromova Altai State University (Barnaul, Russia) Email: khromova.olesya@gmail.com
Keywords: (pseudo)Riemannian manifold, metric connection with vectorial torsion, locally homogeneous manifolds, curvature tensor

Abstract

A metric connection with vectorial torsion (also known as a semi-symmetric connection) is one of the three main connections described by E. Cartan. This connection plays an important role in the case of two-dimensional surfaces since, in this case, any metric connection is a connection with vectorial torsion.K. Yano proved an important theorem on the connection of conformal deformations and metric connections with vectorial torsion. Namely, a Riemannian manifold admits a metric connection with vectorial torsion, the curvative tensor of which is zero, if and only if it is conformally flat. Thus, the problem of studying (pseudo)Riemannian manifolds with metric connection with vectorial torsion, the curvature tensor of which is zero, is arisen.This paper is devoted to solving the problem in the case of three-dimensional locally symmetric manifolds. In addition, a mathematical model is presented that allows one to calculate the components of the curvature tensor of a metric connection with vectorial torsion in the case of locally homogeneous (pseudo)Riemannian manifolds.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

P.N. Klepikov, Altai State University (Barnaul, Russia)

аспирант факультета математики и информационных технологий

E.D. Rodionov, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор кафедры математического анализа

O.P. Khromova , Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры математического анализа

References

Cartan E. Sur les varietes a connexion affine et la theorie de la relativite generalisee (deuxieme partie) // Ann. Ecole Norm. Sup.1925. Vol. 42.

Muniraja G. Manifolds Admitting a Semi-Symmetric Metric Connection and a Generalization of Schur's Theorem // Int. J. Contemp. Math. Sci. 2008. Vol. 3. No 25.

Agricola I., Thier C. The Geodesics of Metric Connections with Vectorial Torsion // Annals of Global Analysis and Geometry. 2004. Vol. 26.

Murathan C., Ozgur C. Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions // Proceedings of the Estonian Academy of Sciences. 2008. Vol. 57. No 4.

Yilmaz H.B., Zengin F.O., Uysal. S.A. On a Semi Symmetric Metric Connection with a Special Condition on a Riemannian Manifold // European journal of pure and applied mathematics. 2011. Vol. 4. No 2.

Zengin F.O., Demirbag S.A., Uysal. S.A., Yilmaz H.B. Some vector fields on a riemannian manifold with semi-symmetric metric connection // Bulletin of the Iranian Mathematical Society. 2012. Vol. 38. No 2.

Agricola I., Kraus M. Manifolds with vectorial torsion // Dierential Geometry and its Applications. 2016. Vol. 46.

Yano K. On semi-symmetric metric connection // Revue Roumame de Math. Pure et Appliquees. 1970. Vol. 15.

Barua B., Ray A. Kr. Some properties of a semi-symmetric metric connection in a Riemannian manifold // Indian J. pure appl. Math. 1985. Vol. 16, No 7.

De U.C., De B.K. Some properties of a semi-symmetric metric connection on a Riemannian manifold // Istanbul Univ. Fen. Fak. Mat. Der. 1995. Vol. 54.

Sekigawa K. On some 3-dimensional curvature homogeneous spaces // Tensor N. S. 1977. Vol. 31.

Calvaruso G. Homogeneous structures on threedimensional Lorentzian manifolds // J. Geom. Phys. 2007. Vol. 57.

Хромова О. П. Применение пакетов символьных вычислений к исследованию оператора одномерной кривизны на нередуктивных однородных псевдоримановых многообразиях // Известия АлтГУ 2017. № 1(93).

Можей Н.П. Когомологии трехмерных однородных пространств // Труды БГТУ 2014. № 6.

Published
2019-09-12
How to Cite
Klepikov P., Rodionov E., Khromova O. Three-Dimensional Locally Symmetric (Pseudo)Riemannian Manifolds with Vectorial Torsion and Zero Curvature Tensor // Izvestiya of Altai State University, 2019, № 4(108). P. 86-90 DOI: 10.14258/izvasu(2019)4-13. URL: http://izvestiya.asu.ru/article/view/%282019%294-13.
Section
Математика и механика

Most read articles by the same author(s)