Инверсия листа Мёбиуса

  • М.А. Чешкова Алтайский государственный университет (Барнаул, Россия) Email: cma@math.asu.ru
Ключевые слова: лист Мёбиуса, инверсия, периодические функции

Аннотация

Если на поверхности в E3 существует замкнутая кривая (дезориентирующий контур), обладающая тем свойством, что при ее обходе локальная ориентация в касательном пространстве меняет знак, то поверхность называется односторонней. Односторонней поверхностью является лист Мебиуса. В евклидовом пространстве E3 рассматриваются две гладкие вектор-функции s = s(u),l = l(u), u [-п,п]. Предполагается, что s = s(u) есть 2п-периодическая, l = l(u) - 2п-антипериодическая. С использованием найденных функций определяется уравнение листа Мёбиуса. Находятся дезориентирующие контуры. Исследуется инверсия листа Мёбиуса. Доказывается, что если лист Мебиуса не проходит через центр инверсии, то инверсия листа Мёбиуса есть лист Мёбиуса. Доказывается также, что если лист Мёбиуса не проходит через центр инверсии, то его дезориентирующие контуры при инверсии перейдут в дезориентирующие контуры. Рассматривается пример листа Мёбиуса. На торе задается замкнутая кривая с помощью 4п-периодической вектор-функции р = p(u). Тогда функция s(u) = 1/2(p(u) + p(u + 2п)) есть 2п-периодическая, а функция l(u) = 1/2 (p(u) - p(u + 2п)) есть 2п-антипериодическая. Определяются уравнения листа Мёбиуса и его инверсии. С помощью системы компьютерной математики строятся исследуемые поверхности.

DOI 10.14258/izvasu(2017)4-29

Скачивания

Metrics

PDF views
211
Jan 1969Jul 1969Jan 1970Jul 1970Jan 1971Jul 1971Jan 1972Jul 1972Jan 1973Jul 1973Jan 1974Jul 1974Jan 1975Jul 1975Jan 1976Jul 1976Jan 1977Jul 1977Jan 1978Jul 1978Jan 1979Jul 1979Jan 1980Jul 1980Jan 1981Jul 1981Jan 1982Jul 1982Jan 1983Jul 1983Jan 1984Jul 1984Jan 1985Jul 1985Jan 1986Jul 1986Jan 1987Jul 1987Jan 1988Jul 1988Jan 1989Jul 1989Jan 1990Jul 1990Jan 1991Jul 1991Jan 1992Jul 1992Jan 1993Jul 1993Jan 1994Jul 1994Jan 1995Jul 1995Jan 1996Jul 1996Jan 1997Jul 1997Jan 1998Jul 1998Jan 1999Jul 1999Jan 2000Jul 2000Jan 2001Jul 2001Jan 2002Jul 2002Jan 2003Jul 2003Jan 2004Jul 2004Jan 2005Jul 2005Jan 2006Jul 2006Jan 2007Jul 2007Jan 2008Jul 2008Jan 2009Jul 2009Jan 2010Jul 2010Jan 2011Jul 2011Jan 2012Jul 2012Jan 2013Jul 2013Jan 2014Jul 2014Jan 2015Jul 2015Jan 2016Jul 2016Jan 2017Jul 2017Jan 2018Jul 2018Jan 2019Jul 2019Jan 2020Jul 2020Jan 2021Jul 2021Jan 2022Jul 2022Jan 2023Jul 2023Jan 2024Jul 2024Jan 2025Jul 2025Jan 202639
|

Биография автора

М.А. Чешкова, Алтайский государственный университет (Барнаул, Россия)
кандидат физико-математических наук, профессор кафедры математического анализа

Литература

Mashke H. Note on the unilateral surface of Moebius // Trans.Amer.Math.Sos., 1:1 (1900).

Сабитов И.Х. Изометрические погружения и вложения плоского листа Мёбиуса в евклидовы пространства // Известия РАН. - 2007. - Т. 71, № 5.

Кривошапко С.Н., Иванов В.Н., Халаби С.М. Аналитические поверхности. - М., 2006.

Гильберт Д., Кон-Фоссен С. Наглядная геометрия. - М., 1981.

Чешкова М.А. Об одной модели бутылки Клейна // Известия Алтайского гос. ун-та. -2016. - № 1(89). DOI: 10.14258/izvasu(2016)1-32.

Чешкова М.А. Односторонние поверхности // Известия Алтайского гос. ун-та. - 2015. -№ 1/2(85). DOI: 10.14258/izvasu(2015)1.2-30.

Чешкова М.А.О плоском листе Мёбиуса // Известия Алтайского гос. ун-та. - 2013. - № 1/2. DOI: 10.14258/izvasu(2013)1.2-09.

Cirilo-Lombaeeto D.I Coherent states for a quantum particle on Mobius // Письма в журнал “Физика элементарных частиц и атомного ядра”. -2009. - Т. 6, № 5.

Словеснов А.В. Ленты Мёбиуса с плоской метрикой // Вестник Московского гос. ун-та. Серия 1: Математика. - 2009. - № 5.

Шалагинов М.Ю., Иванов М.Г., Долгополов М.В. Задачи с оператором Лапласа на топологических поверхностях // Вестник Самарского гос. тех. ун-та. Серия: Физ-мат. науки. - 2011. -№ 2(23).

Борисюк А.Р. Глобальные бифуркации на бутылке Клейна. Общий случай // Математический сборник. - 2015. - Т. 196, № 4.

Набеева Л.Р. Классификация узлов в утолщенной бутылке Клейна // Вестник Челябинского гос. ун-та. - 2012. - № 26 (280).

Карпухин М.А. Немаксимальность экстремальных метрик на торе и бутылке Клейна // Математический сборник. - 2013. - Т. 204, № 12.

Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н. Введение в топологию. - М., 1995.

Розенфельд Б.А. Многомерные пространства. - М., 1966.

Как цитировать
Чешкова М. Инверсия листа Мёбиуса // Известия Алтайского государственного университета, 1, № 4(96) DOI: 10.14258/izvasu(2017)4-291. URL: http://izvestiya.asu.ru/article/view/%282017%294-291.

Наиболее читаемые статьи этого автора (авторов)