An Inversion of a Mobius band
Abstract
If a closed curve (disorienting contour) exists the surface in E3, and the local orientation in the tangent space changes its sign while tracing this curve, then the surface is called a one-sided surface. A Mobius band is the one-sided surface. Two smooth vector-functions are considered in the Euclidian space E3: s = s(u), l = l(u), u ∈ [-n, п]. It is assumed that s = s(u) is a 2п -periodic vector-function, and l = l(u) is a 2п -antiperiodic vector-function. Equations for the Mobius band and the disorienting contours are found using the obtained functions. An inversion of Mobius band is studied. It is proved that if the Mobius band does not cross through the center of inversion, then the inversion of the Mobius band is a Mobius band. It is also proved that if the Mobius band does not cross through the center of inversion, then the disorienting contours of the Moebius band transit to disorienting contours also. An example of the Mobius band is considered. The closed curve is defined on a torus using 4п -periodic vector-function р = p(v). Then vector-function s(v) = 1/2 (p(v) + p(v + 2п)) is a 2п-periodic vector-function and the function l(v) = 1/2 (p(v)-p(v+2n)) is a 2п -antiperiodic vector-function. Equations of the Mobius band and its inversion are developed using the obtained functions. Examples of these surfaces are constructed with mathematical software packages.
DOI 10.14258/izvasu(2017)4-29
Downloads
Metrics
References
Mashke H. Note on the unilateral surface of Moebius // Trans.Amer.Math.Sos., 1:1 (1900).
Сабитов И.Х. Изометрические погружения и вложения плоского листа Мёбиуса в евклидовы пространства // Известия РАН. - 2007. - Т. 71, № 5.
Кривошапко С.Н., Иванов В.Н., Халаби С.М. Аналитические поверхности. - М., 2006.
Гильберт Д., Кон-Фоссен С. Наглядная геометрия. - М., 1981.
Чешкова М.А. Об одной модели бутылки Клейна // Известия Алтайского гос. ун-та. -2016. - № 1(89). DOI: 10.14258/izvasu(2016)1-32.
Чешкова М.А. Односторонние поверхности // Известия Алтайского гос. ун-та. - 2015. -№ 1/2(85). DOI: 10.14258/izvasu(2015)1.2-30.
Чешкова М.А.О плоском листе Мёбиуса // Известия Алтайского гос. ун-та. - 2013. - № 1/2. DOI: 10.14258/izvasu(2013)1.2-09.
Cirilo-Lombaeeto D.I Coherent states for a quantum particle on Mobius // Письма в журнал “Физика элементарных частиц и атомного ядра”. -2009. - Т. 6, № 5.
Словеснов А.В. Ленты Мёбиуса с плоской метрикой // Вестник Московского гос. ун-та. Серия 1: Математика. - 2009. - № 5.
Шалагинов М.Ю., Иванов М.Г., Долгополов М.В. Задачи с оператором Лапласа на топологических поверхностях // Вестник Самарского гос. тех. ун-та. Серия: Физ-мат. науки. - 2011. -№ 2(23).
Борисюк А.Р. Глобальные бифуркации на бутылке Клейна. Общий случай // Математический сборник. - 2015. - Т. 196, № 4.
Набеева Л.Р. Классификация узлов в утолщенной бутылке Клейна // Вестник Челябинского гос. ун-та. - 2012. - № 26 (280).
Карпухин М.А. Немаксимальность экстремальных метрик на торе и бутылке Клейна // Математический сборник. - 2013. - Т. 204, № 12.
Борисович Ю.Г., Близняков Н.М., Израилевич Я.А., Фоменко Т.Н. Введение в топологию. - М., 1995.
Розенфельд Б.А. Многомерные пространства. - М., 1966.
Copyright (c) 2017 М.А. Чешкова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).