Eigenvalues of Ricci Operator of Four-Dimensional Locally Homogeneous Riemannian Manifolds with Nontrivial Isotropy Subgroup
УДК 515.165.7
Abstract
The topology of Riemannian manifolds can be linked to the eigenvalues of curvature operators, which was demonstrated in the works of J. Milnor, V.N. Berestovsky, V.V. Slavkii, E.D. Rodionov, and Yu.G. Nikonorov. J. Milnor studied the eigenvalues of the Ricci curvature operator of left-invariant Riemannian metrics on Lie groups, and identified possible signatures of the Ricci operator for three-dimensional Lie groups. O. Kowalski and S. Nikcevic later resolved the problem of prescribed spectrum values of the Ricci operator on three-dimensional metric Lie groups and Riemannian locally homogeneous spaces. D.N. Oskorbin, E.D. Rodionov, and O.P. Khomova also obtained similar results for the one-dimensional curvature operator and the sectional curvature operator. A.G. Kremlev and Yu.G. Nikonorov investigated the fourdimensional case and studied the possible signatures of the Ricci curvature of left-invariant Riemannian metrics on Lie groups. In this study, we aim to solve the problem of prescribed eigenvalues of the Ricci operator on locally homogeneous Riemannian manifolds with a nontrivial isotropy subgroup.
Downloads
Metrics
References
Milnor J. Curvature of left invariant metric on Lie groups // Advances in mathematics. 1976. Vol. 21. DOI: 10.1016/S0001-8708(76)80002-3.
Berestovsky V.N. Homogenious Riemannian manifolds of positive Ricci curvature // Mat. Zametki. 1995. Vol. 55, No 3. DOI:10.1007/BF02304766.
Rodionov E.D., Slavkii V.V. Curvature estimations of left invariant Riemannian metrics on three-dimensional Lie groups // Diferential Geometry and Application. Proceeding of the 7th International Conference. Brno, 1999.
Kowalski O., Nikcevic S. On Ricci eigenvalues of locally homogeneous Riemann 3-manifolds // Geom. Dedicata. 1996. No 1. DOI:10.1007/BF00240002.
Гладунова О.П., Оскорбин Д.Н. Применение пакетов символьных вычислений к исследованию спектра оператора кривизны на метрических группах ЛИ // Известия Алт. гос. ун-та. 2013. №1/1.
Воронов Д.С., Гладунова О.П. Сигнатура оператора одномерной кривизны на трехмерных группах Ли с левоинвариантной римановой метрикой // Известия Алт. гос. ун-та. 2003. №1-2.
Кремлев А.Г., Никоноров Ю.Г. Сигнатура кривизны Риччи левоинвариантных метрик на четырехмерных группах Ли. Унимодулярный случай // Мат. Труды. 2008. Т. 11. №2. DOI:10.3103/S1055134409040038.
Кремлев А.Г., Никоноров Ю.Г. Сигнатуракривизны Риччи левоинвариантныхримановыхметрикна четырех-мерных группах Ли. Неунимодулярный случай // Мат. труды. 2009.Т. 12.№ 1.DOI:10.3103/S1055134410010013.
Nikonorov Yu.G. Negative eigenvalues of the Ricci operator ofsolvable metricLie algebras//GeometriaeDedicata. 2014.Vol.170.DOI: 10.1007/s10711-013-9871-0.
Хромова О.П. Применение пакетов аналитических вычислений для определения основных геометрических характеристик нередуктивных однородных псевдоримановых многообразий // Математика и ее приложения: фундаментальные проблемы науки и техники : сборник трудов всеросс. конф. Барнаул, 2015.
Клепиков П.Н., Родионов Е.Д. Применение пакетов символьных вычислений к исследованию алгебраических солитонов Риччи на однородных (псевдо)римановых многообразиях // Известия Алт. гос. ун-та. 2017. № 4(96). DOI: 10.14258/izvasu(2017)4-19.
Calvaruso G., Zaeim A. Conformally flat homogeneous pseudo-riemannian four-manifolds // Tohoku Math. J. 2014. Vol. 66. DOI:10.2748/tmj/1396875661.
Komrakov B.B. Einstein-Maxwell equation on fourdimensional homogeneous spaces // Lobachevskii J. Math. 2001.Vol.8.
Copyright (c) 2023 Павел Николаевич Клепиков , Евгений Дмитриевич Родионов
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).