Mathematical Modeling in Problems of Homogeneous (Pseudo)Riemaimian Geometry
УДК 514.764.2
Abstract
Currently, mathematical and computer modeling, as well as systems of symbolic calculations, are actively used in many areas of mathematics. Popular computer math systems as Maple, Mathematica, MathCad, MatLab allow not only to perform calculations using symbolic expressions but also solve algebraic and differential equations (numerically and analytically) and visualize the results. Differential geometry, like other areas of modern mathematics, uses new computer technologies to solve its own problems. The applying is not limited only to numerical calculations; more and more often, computer mathematics systems are used for analytical calculations. At the moment, there are many examples that prove the effectiveness of systems of analytical calculations in the proof of theorems of differential geometry.This paper demonstrates how symbolic computation packages can be used to classify neither conformally flat nor Ricci parallel four-dimensional Lie groups with leftinvariant (pseudo)Riemannian metric of the algebraic Ricci soliton with the zero Schouten-Weyl tensor.
Downloads
Metrics
References
Komrakov B.B. Einstein-Maxwell equation on four-dimensional homogeneous spaces // Lobachevskii J. Math. 2001. V. 8.
Calvaruso G., Zaeim A. Conformally flat homogeneous pseudo-Riemannian four-manifolds // Tohoku Math. J. 2014. V. 66.
Calvaruso G., Zaeim A. Four-dimensional pseudo-Riemannian g.o. spaces and manifolds // Journal of Geometry and Physics. 2018. V. 130.
Calvaruso G., Fino A. Four-dimensional pseudo-Riemannian homogeneous Ricci solitions // International Journal of Geometric Methods in Modern Physics. 2011. V. 12, No 5.
Zaeim A., Haji-Badali A. Einstein-like Pseudo-Riemannian Homogeneous Manifolds of Dimension Four // Mediterranean Journal of Mathematics. 2016. V. 13(5).
Гладунова О.П., Славский В.В. О гармоничности тензора Вейля левоинвариантных римановых метрик на четырехмерных унимодулярных групах Ли // Математические труды. 2011. Т. 14. № 1.
Воронов Д.С., Родионов Е.Д. Левоинвариантные римановы метрики на четырехмерных неунимодулярных группах Ли с нулевой дивергенцией тензора Вейля // Доклады академии наук. 2010. Т. 432, № 3.
Gladunova O.P., Slavskii V.V. Harmonicity of the Weyl tensor of left-invariant Riemannian metrics on four-dimensional unimodular Lie groups // Siberian Advances in math. 2013. V. 23. № 1.
Гладунова О.П., Оскорбин Д.Н. Применение пакетов символьных вычислений к исследованию спектра оператора кривизны на метрических группах Ли // Известия Алтайского гос. ун-та. 2013. № 1/1(77).
Родионов Е.Д., Славский В.В., Чибрикова Л.Н. Локально конформно однородные псевдоримановы пространства // Математические труды. 2006. Т. 9. № 1.
Клепиков П.Н. Конформно плоские алгебраические солитоны Риччи на группах Ли // Математические заметки. 2018. Т. 104. № 1.
Клепиков П.Н. Четырехмерные метрические группы Ли с нулевым тензором Схоутена-Вейля // Сибирские электронные математические известия. 2019. Т. 16.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).