Investigation of four-dimensional locally homogeneous (Pseudo)Riemannian Manifolds with an isotropic Schouten — Weyl Tensor

  • П.Н. Клепиков Алтайский государственный университет (Барнаул, Россия)
  • С.В. Клепикова Алтайский государственный университет (Барнаул, Россия)
  • К.О. Кизбикенов Алтайский государственный педагогический университет (Барнаул, Россия)
  • И.В. Эрнст Алтайский государственный университет (Барнаул, Россия)
Keywords: (pseudo)Riemannian manifold, isotropic Schouten — Weyl tensor, systems of computer mathematics

Abstract

Locally homogeneous (pseudo)Riemannian manifolds were studied by many mathematicians. Their generalization is a locally conformally homogeneous (pseudo)Riemannian manifolds on which a conformal transformations act transitively. Such manifolds were previously studied both in the Riemannian case and in the pseudo-Riemannian case.

In the paper of E.D. Rodionov, V.V. Slavsky and L.N. Chibrikova it was proved that a locally homogeneous manifold could be obtained from a locally conformally homogeneous (pseudo)Rieman-nian manifolds by a conformal deformation if the Weyl tensor (or the Schouten — Weyl tensor in the three-dimensional case) has a nonzero squared length. Thus, the problem arises of studying (pseudo)Riemannian locally homogeneous and locally conformally homogeneous manifolds, the Schouten — Weyl tensor of which has zero squared length, and itself is not equal to zero.

In this paper, we present an algorithm that can solve the classification problem of four-dimensional locally homogeneous (pseudo)Riemannian manifolds with a nontrivial isotropy subgroup and an isotropic Schouten — Weyl tensor.

DOI 10.14258/izvasu(2018)4-14

Downloads

Download data is not yet available.

References

Rodionov E.D., Slavskii V.V. Conformal deformations of the Riemannian metrics and homogeneous Riemannian spaces // Comment. Math. Univ. Carolin. - 2002. - Vol. 43, № 2.

Rodionov E.D., Slavskii V.V., Chibrikova L.N. Locally conformally homogeneous pseudo-Riemannian spaces // Siberian Advances in Mathematics. — 2007. — Vol. 17, № 3.

Khromova O.P., Klepikov P.N., Klepikova S.V., Rodionov E.D. About the Schouten-Weyl tensor on 3-dimensional Lorenzian Lie groups // arXiv:1708.06614, 2017.

Besse A. Einstein manifolds — Springer — Verlag, Berlin — Heidelberg, 1987. DOI: 10.1007/978-3-540-74311-8

Salimi Moghaddam H.R. On Ricci Soliton metrics conformally equivalent to left invariant metrics // arXiv:1401.0744, 2016.

Podoksenov M.N. Conformally homogeneous Lorentz manifolds. II // Siberian Mathematical Journal. — 1992. — Vol. 33, № 6.

Liimatainen T., Salo M. Nowhere conformally homogeneous manifolds and limiting Carleman weights // Inverse Problems and Imaging. — 2012. — Vol. 6, № 3. DOI: 10.3934/ipi.2012.6.523

Alekseevsky D. Lorentzian manifolds with transitive conformal group // Note di Matematica. — 2017. — Vol. 37, № 1. DOI: 10.1285/i15900932v37suppl1p35

Клепиков П.Н., Родионов Е.Д. Применение пакетов символьных вычислений к исследованию алгебраических солитонов Риччи на однородных (псевдо)римановых многообразиях // Известия АлтГУ. — 2017. — № 4 (96). DOI: 10.14258/izvasu(2017)4-19

Хромова О.П. Применение пакетов символьных вычислений к исследованию оператора одномерной кривизны на нередуктивных однородных псевдоримановых многообразиях // Известия АлтГУ. — 2017. — № 1 (93). DOI: 10.14258/izvasu(2017)1-28

Komrakov B.B. Einstein-Maxwell equation on four-dimensional homogeneous spaces // Lobachevskii J. Math. — 2001. — Vol. 8.
Published
2018-09-14
How to Cite
Клепиков, П., Клепикова, С., Кизбикенов, К., & Эрнст, И. (2018). Investigation of four-dimensional locally homogeneous (Pseudo)Riemannian Manifolds with an isotropic Schouten — Weyl Tensor. Izvestiya of Altai State University, (4(102), 79-82. https://doi.org/https://doi.org/10.14258/izvasu(2018)4-14
Section
Математика и механика

Most read articles by the same author(s)

1 2 > >>