Numerical Solotion of a Problem of Fluid Filtration in a Viscoelastic Porous Medium

УДК 519.6+536

  • R.A. Virts Altai State University (Barnaul, Russia) Email: virtsrudolf@gmail.com
  • A.A. Papin Altai State University (Barnaul, Russia) Email: papin@math.asu.ru
  • W.A. Weigant Bonn University (Bonn, Germany) Email: w-weigant@t-online.de
Keywords: porosity, filtration, poroelasticity, Darcy law

Abstract

The paper considers a model for filtering a viscous incompressible fluid in a deformable porous medium. The filtration process can be described by a system consisting of mass conservation equations for liquid and solid phases, Darcy's law, rheological relation for a porous medium, and the law of conservation of balance of forces. This paper assumes that the poroelastic medium has both viscous and elastic properties. In the one-dimensional case, the transition to Lagrange variables allows us to reduce the initial system of governing equations to a system of two equations for effective pressure and porosity, respectively. The aim of the work is a numerical study of the emerging initial-boundary value problem. Paragraph 1 gives the statement of the problem and a brief review of the literature on works close to this topic. In paragraph 2, the initial system of equations is transformed, as a result of which a second-order equation for effective pressure and the first-order equation for porosity arise. Paragraph 3 proposes an algorithm to solve the initial-boundary value problem numerically. A difference scheme for the heat equation with the righthand side and a Runge–Kutta second-order approximation scheme are used for numerical implementation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

R.A. Virts, Altai State University (Barnaul, Russia)

аспирант факультета математики и информационных технологий

A.A. Papin, Altai State University (Barnaul, Russia)

доктор физико-математических наук, заведующий кафедрой дифференциальных уравнений факультета математики и информационных технологий

W.A. Weigant, Bonn University (Bonn, Germany)

профессор

References

Bear J. Dynamics of Fluids in Porous Media // Elseiver. New York. 1972.

Connoly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelastic rock // Geodin. Acta, 11 (1998). DOI: 10.1016/S0985-3111(98)80006-5.

Morency S., Huismans R.S., Beaumont C, Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Redearch, 112(2007), B10407. DOI: 10.1029/2006JB004701.

Нигматулин Р.И. Динамика многофазных сред. М., 1987. Ч. 1.

Simpson M., Spiegelman M., Weinstein C.I. Degenerate dispersive equations arising in the stady of magma dynamics // Nonlinearty, 20(2007). DOI: 10.1088/0951-7715/20/1/003.

Abourabia A.M., Hassan K.M., Morad A.M. Analytical solutions of the magma equations for molten rocks in a granular matrix // Chaos Solutions Fract., 42(2009). DOI: 10.1016/j.chaos.2009.03.078.

Geng Y., Zhang L. Bifurcations of traveling wave solutions for the magma equations // Applied Mathematics and computation, 217(2010). DOI: 10.1016/j.amc.2009.11.035.

Вирц Р.А., Папин А.А., Вайгант В.А. Численное решение одномерной задачи фильтрации несжимаемой жидкости в вязкой пористой среде // Известия Алт. гос. ун-та. 2018. № 4 (102). DOI: 10.14258/izvasu(2018)4-11.

Koleva M.N., Vulkov L.G. Numerical analysis of one dimensional motion of magma without mass forces // Journal of Computational and Applied Mathematics. 2020. Т. 366. DOI: 10.1016/j.cam.2019.07.003.

Токарева М.А., Вирц Р.А. Аналитическое и численное исследование задачи фильтрации в пороупругой среде : c6. трудов Всероссийской конференции по математике "МАК-2016". 2016.

Байкин А.Н. Динамика трещины гидроразрыва пласта в неоднородной пороупругой среде : дисс. ... канд. физико-математических наук. Новосибирск, 2016.

Dushin V.R., Nikitin V.F., Legros J.C., Silnikov M.V. Mathematical modeling of flows in porous media // WSEAS Transactions on Fluid Mechanics. 2014. T. 9.

Tokareva M.A. Solvability of initial boundary value problen for the equations of filtration poroelastic media // Journal of Physics: Conference Series. 2016. T. 722. №1. DOI: 10.1088/17426596/722/1/012037.

Papin A.A., Tokareva M.A. Correctness of the initial - boundary problem of the compressible fluid filtration in a viscous porous medium // Journal of Physics: Conference Series. 2017. T. 894. № 1. DOI: 10.1088/1742-6596/894/1/012070.

Papin A.A., Tokareva M.A. On Local solvability of the system of the equation of one dimensional motion of magma // Журн. Сиб. федерального ун-та. Серия: Математика и физика. 2017. T. 10. №3. DOI: 10.17516/1997-1397-2017-103-385-395.

Токарева М.А. Конечное время стабилизации уравнений фильтрации жидкости в пороупругой среде // Известия Алт. гос. ун-та. 2015. Т. 2. № 1. DOI: 10.14258/izvasu(2015)1.2-28.

Tokareva M., Papin A. Solvability of the system of equations of one-dimensional movement of a viscous liquid in a deformable viscous porous medium // Journal of Physics: Conference Series. IOP Publishing, 2019. Т. 1268. № 1. DOI: 10.1088/1742-6596/1268/1/012053.

Tokareva M.A., Papin A.A. Global solvability of a system of equations of onedimensional motion of a viscous fluid in a deformable viscous porous medium // Journal of Applied and Industrial Mathematics. 2019. Т. 13. № 2. DOI: 10.1134/S1990478919020169.

Самарский А.А. Теория разностных схем. М., 1977.

Самарский А.А., Гулин А.В. Численные методы. М., 1989.

Fowler A. Mathematical Geoscience. Springer-Verlag London Limited, 2011. DOI: 10.1007/s11004-012-9399-0.

Калиткин Н.Н. Численные методы. M., 1978.

Published
2020-03-06
How to Cite
Virts R., Papin A., Weigant W. Numerical Solotion of a Problem of Fluid Filtration in a Viscoelastic Porous Medium // Izvestiya of Altai State University, 2020, № 1(111). P. 72-76 DOI: 10.14258/izvasu(2020)1-11. URL: http://izvestiya.asu.ru/article/view/%282020%291-11.
Section
Математика и механика