Numerical Solotion of a Problem of Fluid Filtration in a Viscoelastic Porous Medium
УДК 519.6+536
Abstract
The paper considers a model for filtering a viscous incompressible fluid in a deformable porous medium. The filtration process can be described by a system consisting of mass conservation equations for liquid and solid phases, Darcy's law, rheological relation for a porous medium, and the law of conservation of balance of forces. This paper assumes that the poroelastic medium has both viscous and elastic properties. In the one-dimensional case, the transition to Lagrange variables allows us to reduce the initial system of governing equations to a system of two equations for effective pressure and porosity, respectively. The aim of the work is a numerical study of the emerging initial-boundary value problem. Paragraph 1 gives the statement of the problem and a brief review of the literature on works close to this topic. In paragraph 2, the initial system of equations is transformed, as a result of which a second-order equation for effective pressure and the first-order equation for porosity arise. Paragraph 3 proposes an algorithm to solve the initial-boundary value problem numerically. A difference scheme for the heat equation with the righthand side and a Runge–Kutta second-order approximation scheme are used for numerical implementation.
Downloads
Metrics
References
Bear J. Dynamics of Fluids in Porous Media // Elseiver. New York. 1972.
Connoly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelastic rock // Geodin. Acta, 11 (1998). DOI: 10.1016/S0985-3111(98)80006-5.
Morency S., Huismans R.S., Beaumont C, Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Redearch, 112(2007), B10407. DOI: 10.1029/2006JB004701.
Нигматулин Р.И. Динамика многофазных сред. М., 1987. Ч. 1.
Simpson M., Spiegelman M., Weinstein C.I. Degenerate dispersive equations arising in the stady of magma dynamics // Nonlinearty, 20(2007). DOI: 10.1088/0951-7715/20/1/003.
Abourabia A.M., Hassan K.M., Morad A.M. Analytical solutions of the magma equations for molten rocks in a granular matrix // Chaos Solutions Fract., 42(2009). DOI: 10.1016/j.chaos.2009.03.078.
Geng Y., Zhang L. Bifurcations of traveling wave solutions for the magma equations // Applied Mathematics and computation, 217(2010). DOI: 10.1016/j.amc.2009.11.035.
Вирц Р.А., Папин А.А., Вайгант В.А. Численное решение одномерной задачи фильтрации несжимаемой жидкости в вязкой пористой среде // Известия Алт. гос. ун-та. 2018. № 4 (102). DOI: 10.14258/izvasu(2018)4-11.
Koleva M.N., Vulkov L.G. Numerical analysis of one dimensional motion of magma without mass forces // Journal of Computational and Applied Mathematics. 2020. Т. 366. DOI: 10.1016/j.cam.2019.07.003.
Токарева М.А., Вирц Р.А. Аналитическое и численное исследование задачи фильтрации в пороупругой среде : c6. трудов Всероссийской конференции по математике "МАК-2016". 2016.
Байкин А.Н. Динамика трещины гидроразрыва пласта в неоднородной пороупругой среде : дисс. ... канд. физико-математических наук. Новосибирск, 2016.
Dushin V.R., Nikitin V.F., Legros J.C., Silnikov M.V. Mathematical modeling of flows in porous media // WSEAS Transactions on Fluid Mechanics. 2014. T. 9.
Tokareva M.A. Solvability of initial boundary value problen for the equations of filtration poroelastic media // Journal of Physics: Conference Series. 2016. T. 722. №1. DOI: 10.1088/17426596/722/1/012037.
Papin A.A., Tokareva M.A. Correctness of the initial - boundary problem of the compressible fluid filtration in a viscous porous medium // Journal of Physics: Conference Series. 2017. T. 894. № 1. DOI: 10.1088/1742-6596/894/1/012070.
Papin A.A., Tokareva M.A. On Local solvability of the system of the equation of one dimensional motion of magma // Журн. Сиб. федерального ун-та. Серия: Математика и физика. 2017. T. 10. №3. DOI: 10.17516/1997-1397-2017-103-385-395.
Токарева М.А. Конечное время стабилизации уравнений фильтрации жидкости в пороупругой среде // Известия Алт. гос. ун-та. 2015. Т. 2. № 1. DOI: 10.14258/izvasu(2015)1.2-28.
Tokareva M., Papin A. Solvability of the system of equations of one-dimensional movement of a viscous liquid in a deformable viscous porous medium // Journal of Physics: Conference Series. IOP Publishing, 2019. Т. 1268. № 1. DOI: 10.1088/1742-6596/1268/1/012053.
Tokareva M.A., Papin A.A. Global solvability of a system of equations of onedimensional motion of a viscous fluid in a deformable viscous porous medium // Journal of Applied and Industrial Mathematics. 2019. Т. 13. № 2. DOI: 10.1134/S1990478919020169.
Самарский А.А. Теория разностных схем. М., 1977.
Самарский А.А., Гулин А.В. Численные методы. М., 1989.
Fowler A. Mathematical Geoscience. Springer-Verlag London Limited, 2011. DOI: 10.1007/s11004-012-9399-0.
Калиткин Н.Н. Численные методы. M., 1978.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).