Problem of a Moving Load in a Channel Covered with Broken Ice

  • К.Н. Завьялова Алтайский государственный университет (Барнаул, Россия) Email: kristinazavyalova-1996@mail.ru
  • К.А. Шишмарев Алтайский государственный университет (Барнаул, Россия) Email: shishmarev.k@mail.ru
  • Т.И. Хабахпашева Университет Восточной Англии (Норидж, Великобритания); Институт гидродинамики им. Лаврентьева СО РАН (Новосибирск, Россия) Email: t.khabakhpasheva@uea.ac.uk
Keywords: broken ice, marginal ice zone, gravity waves, moving load, channel

Abstract

In this paper, the effect of broken ice on the formation of gravitational waves caused by an external load moving along a channel is studied. The external load is modeled by a smooth locally distributed pressure moving along the center line of the channel at a constant speed. The governing equations are the differential equation of oscillations of thin broken ice and the Laplace equation for a flow velocity potential under the broken ice. These equations are closed by the impermeability conditions on the walls and bottom of the channel, and by the kinematic and dynamic conditions at the broken ice-liquid interface. The traveling wave solution that does not depend on time in a coordinate system moving together with the external load is investigated. Using the Fourier transform along the channel the problem under consideration reduces to a two-dimensional problem with respect to the profile of the gravitational wave across the channel, which is solved by the method of separation of variables. The analysis of the formation of gravitational waves in the broken ice is provided. It is shown that for every speed of the load there is a countable number of gravitational waves propagating along the channel with the velocity of the load. Each wave has a given profile across the channel. An example of test calculations for a three-dimensional problem is shown.

DOI 10.14258/izvasu(2018)4-13

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Squire V., Hosking R., Kerr A., Langhorne P. Moving loads on ice. — Kluwer Academic Publishers, 1996.

Shishmarev K., Khabakhpasheva T., Korobkin A.. The response of ice cover to a load moving along a frozen channel. — Applied Ocean Research. — 2016. — Т. 59.

Kozin V.M. Resonance Method of Breaking of Ice Cover. Inventions and Experiments. — M., 2007.

Коробкин А.А., Папин А.А., Шишма-рев К.А. Аналитическое и численное исследование квазиизотермической задачи взаимодействия ледового покрова канала и поверхностных волн. // Известия АлтГУ. — 2012. — Вып. 1/2 (73).

Коробкин А.А., Папин А.А., Шишмарев К.А. Поведение ледового покрова канала под действием поверхностных волн // Известия АлтГУ. — 2012. — Вып. 1/1 (73).

Korobkin A., Khabakhpasheva T., Papin A. Waves propagating along a channel with ice cover // European Journal of Mechanics B/Fluids, 2014. K.A.V. 47.

Batyaev E.A, Khabakhpasheva T.I. Hydroelastic waves in channel with free ice cover. Fluid Dynamics, 2015. — 6.

Zhestkaya V.D. Numerical solution of the problem of an ice sheet under a moving load // Journal of Applid Mechanics and Technical Physics. — 1999. — V. 40 (4).

Жесткая В.Д., Козин В.М. Численное решение задачи о воздействии ударного импульса на ледяной покров. — ПМТФ. — 2008. — Т. 49. — № 2.

Brocklehurst P. Hydroelastic waves and their interaction with fixed structures // PhD thesis, University of East Anglia, UK, 2012.

Sturova I.V., TkachevaL L.A. Wave motion in a fluid under and inhomogeneous ice cover // Journal of Physics: Conference Series. — 2017. -Т. 894. — № 1.

Стурова И.В., Ткачева Л.А. Колебания ограниченного ледяного покрова при локальном динамическом воздействии // Полярная механика. — 2016. — № 3.

Ткачева Л.А. Колебания ледяного покрова с трещиной при воздействии периодической по времени нагрузки. — Известия Российской академии наук. Механика жидкости и газа. — 2017. — № 2.

Tkacheva L.A. Vibrations of an ice sheet with crack under a time-periodic load // Fluid Dynamics. — 2017. — Т. 52. — № 2.

Токарева М.А. Конечное время стабилизации решения уравнений фильтрации жидкости в пороупругой среде // Известия Алтайского государственного университета. — 2015. — Т. 2. — № 1.

Tokareva М.А. Solvability of initial boundary value problem for the equations of filtration in poroelastic media // Journal of Physics: Conference Series. — 2016. — Т. 722. — № 1.

Kozin V.M., Zhestkaya V.D., Pogorelova A.V., Chizhumov S.D., Dzhabailov M.P., Morozov V.S., Kustov A.N. Applied problems of the dynamics of ice cover. — M., 2008.

Шишмарев К.А., Завьялова К.Н. Свободные и вынужденные волны в канале, покрытом битым льдом // МАК: Математики — Алтайскому краю : cборник трудов всероссийской конференции по математике. — 2017.

Published
2018-09-14
How to Cite
Завьялова К., Шишмарев К., Хабахпашева Т. Problem of a Moving Load in a Channel Covered with Broken Ice // Izvestiya of Altai State University, 2018, № 4(102). P. 73-78 DOI: 10.14258/izvasu(2018)4-13. URL: http://izvestiya.asu.ru/article/view/%282018%294-13.
Section
Математика и механика