Sequential Linear Interpolation Correction Methods Used for Finding Zeros of Functions and Characteristic Polynomials of Matrices of a Special Form
Abstract
Computational schemes of the method of "correction of sequential linear interpolation (MCSLI)" are considered in this paper. MCSLI are used for finding zeros of nonlinear (including transcendental) functions, as well as zeros of characteristic polynomials of matrices of a special form, such as almost triangular (Hessenberg form), tridiagonal and others forms of matrices obtained, for example, by Givens or Householder methods from matrices of general form. The proposed computational schemes of MCSLI for cases of simple and multiple roots (including pathologically close roots) have a structural and functional similarity. MCSLI schemes designed to localize and improve multiple roots can also be used to localize a group of closely related roots consisting of simple roots and roots of different multiplicity (including pathologically close roots). The schemes of MCSLI have computational stability and a high convergence rate (the order of the convergence rate is approximately equal to two). Based on the results of computational experiments for MCSLI and other effective methods, the dependences of diagonalization time of matrices of a special form on the order of these matrices are obtained.
DOI 10.14258/izvasu(2018)1-16
Downloads
Metrics
References
Уилкинсон Дж.Х. Алгебраическая проблема собственных значений / пер. с англ. В.В. Воеводина и В.Н. Фадеевой. — М., 1970.
Парлетт Б. Симметрическая проблема собственных значений. Численные методы // пер. с англ. Х.Д. Икрамова и Ю.А. Кузнецова. — М., 1983.
Watkins D.S. The Matrix Eigenvalue Problem: GR and Krylov Methods // D.S. Watkins. — SIAM. — 2007.
Prodi G. Eigenvalues of non-linear problems // G. Prodi (ed.). — Berlin, 2010.
Новиков М.А. Одновременная диагонализация трех вещественных симметричных матриц // Известия вузов. Математика. — 2014. — № 12.
Кочура А.Е., Подкользина Л.В., Ивакин Я.А., Нид-зиев И.И. Сингулярные матричные пучки в обобщенной симметричной проблеме собственных значений // Труды СПИИРАН. — 2013. — Вып. 3 (26).
Кузнецов Ю.И. Проблема собственных значений симметричной теплициевой матрицы // Сибирский журнал вычислительной математики. — 2009. — Т. 12, № 4.
Иордан В.И. Быстродействующие алгоритмы диагонализации трехдиагональных симметричных матриц на основе элементарных плоских вращений // Изв. Алт. гос. ун-та. — 2017. — № 1 (93). 10.14258/
izvasu(2017)1-15
Калинина Е.А. Кратные собственные числа матрицы с элементами, полиномиально зависящими от параметра // Вестник СПбГУ Сер. 10. Прикладная математика. Информатика. Процессы управления. — 2016. — Вып. 2. DOI 10.21638/11701/spbu10.2016.203
Иордан В.И. Эффективные методы определения энергетического спектра матриц большой размерности в задачах экспериментальной физики : дисс. ... канд. физ.-мат. наук. — Барнаул, 2003.
Copyright (c) 2018 В.И. Иордан
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).