Finite Time Stabilization of a Solution for Equations of Fluid Filtration in a Poroelastic Medium

  • М.А. Токарева Altai State University (Barnaul, Russia) Email: papin@math.asu.ru
Keywords: filtration, poroelasticity, Lagrange variables, finite time stabilization

Abstract

Problems of filtration in porous media are of practical importance for studies related to forecasting of pollutants distribution, filtration near the river dams, reservoirs and other hydraulic structures, drainage of footings and basements of buildings, irrigation and drainage of agricultural fields, water, oil and gas production, movement of magma in the crust, etc. The paper investigates the mathematical model of fluid filtration in poroelastic media with predominant elastic properties of deformation, i.e., with high values of medium dynamic viscosity coefficient. The filtration process is defined by the mass conservation laws for fluid and solid phases, Darcy’s law with skeleton movement, the rheological Maxwell law, and the equation of momentum conservation for the system as a whole. Passing to Lagrange variables reduces a system of equations to a parabolic equation for porosity with a degenerate solution. Finite time stabilization of the solution is established by the method of integral energy estimates for low values of volume compressibility coefficient of a solid medium.

DOI 10.14258/izvasu(2015)1.2-28

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

М.А. Токарева, Altai State University (Barnaul, Russia)
старший преподаватель кафедры дифференциальных уравнений факультета математики и информационных технологий

References

Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. - Новосибирск, 1983.

Bear J. Dynamics of Fluids in Porous Media. - New York, 1972.

Fowler A.C., Yang X. Pressure solution and viscous compaction in sedimentary basins // J. Geophys. Res., 104, 12,989-12,997, 1999.

Fowler A.C. A compaction model for melt transport in the Earth’s asthenosphere, part 1, the basic model, in Magma Transport and Storage, edited by M.P. Ryan, pp. 3-14, Jhon Wiley. - New York, 1990.

Connolly J.A.D., Podladchikov Y.Y. Compaction- driven fluid flow in viscoelastic rock // Geodin. Acta. - 1998.

Morency C., Huismans R. S., Beaumont C., Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Research. - 2007. - Vol. 112.

Папин А.А., Токарева М.А. Задача о движении сжимаемой жидкости в деформируемой горной породе // Известия Алт. гос. ун-та. - 2011. - №1/2 (72).

Папин А.А., Токарева М.А. Динамика тающего деформируемого снежно-ледового покрова // Вестник НГУ. - Серия: Математика, механика, информатика. - 2012. - №4.

Connolly J.A.D., Podladchikov Yu.Yu. Temperature-dependent viscoelastic compaction and compartmentalization in sedimentary basins // Tectonophysics. - 324 (2000).

Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. - М., 1967.

Антонцев С.Н. О характере возмущений, описываемых решениями многомерных вырождающихся параболических уравнений // Динамика сплошной среды. - Новосибирск, 1979. - Вып. 40.

Favini A., Marinoschi G. Degenerate Nonlinear Diffusion Equations. Springer. - 2012.

DiBenedetto E. Degenerate Parabolic Equations. Springer-Verlag. - 1993.

How to Cite
Токарева М. Finite Time Stabilization of a Solution for Equations of Fluid Filtration in a Poroelastic Medium // Izvestiya of Altai State University, 1, № 1/2(85) DOI: 10.14258/izvasu(2015)1.2-28. URL: http://izvestiya.asu.ru/article/view/%282015%291.2-28.