Computer Simulation of Electron Transfer between the Cytochrome Active Center and Reactive Oxygen and Nitrogen Species

УДК 539.12:004.94

  • E.A. Popova Altai State University (Barnaul, Russia) Email: yekaterina.p0115@gmail.com
  • A.V. Ryabykh Altai State University (Barnaul, Russia) Email: ryabykh@chem.asu.ru
  • O.A. Maslova Altai State University (Barnaul, Russia) Email: maslova_o.a@mail.ru
  • S.A. Beznosyuk Altai State University (Barnaul, Russia) Email: bsa1953@mail.ru
Keywords: continuum models of a solvent dielectric medium, oxygen superoxide ion, nitrogen monoxide, electron affinity energy, density functional method, computer simulation, polarizability

Abstract

In this work, computer simulation at the level of density functional theory is carried out using the PBE functional and bases of the def2- group. The characteristics of the electron transfer reaction according to the Marcus theory from the bioradicals O2-, NO, and NO- to the active center of cytochrome c are calculated. The values of the activation energy ΔG, the overlapping matrix element of the donor and acceptor HDA molecular orbitals, the frequency transfer factor ket , and the second-order transfer rate constant k are obtained. The numerical values of k for three radicals make it possible to draw a conclusion about the efficiency of their neutralization by interaction with the active center of the enzyme. For instance, for superoxide ion O2- k=6.32·105 М-1-1 at a distance of 5.02 Å, for nitrogen monoxide NO k=6.96·106 М-1-1 at a distance of 5.60 Å and oxoazanide ion NO- k=4.45·101 М-1-1 at distances of 5.60 Å and 4.45 Å. The transfer distances are obtained from the potential energy curves when the radical approaches the iron ion. The obtained values allow us to conclude that the iron ion in the heme protein environment is the most effective in deactivating the superoxide ion and nitrogen monoxide.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

E.A. Popova, Altai State University (Barnaul, Russia)

аспирантка Института химии и химико-фармацевтических технологий

A.V. Ryabykh, Altai State University (Barnaul, Russia)

ассистент кафедры физической и неорганической химии

O.A. Maslova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры физической и неорганической химии

S.A. Beznosyuk, Altai State University (Barnaul, Russia)

профессор, доктор физико-математических наук, заведующий кафедрой физической и неорганической химии

References

Barja G. Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity // J. Bioenergetics and Biomembranes. 1999. Vol. 31.

Осипов А.Н., Борисенко Г.Г. Биологическая роль нитрозильных комплексов гемопротеинов // Успехи биологической химии. 2007. Т. 47.

Neese F. The ORCA program system // Wiley interdisciplinary Reviews — Computational Molecular Science. 2012. Vol. 2 (1).

Perdew J.P, Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Phys. Rev. Letters. 1996. Vol. 77.

Weigend F., Ahlrichs R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy // Phys. Chem. Chem. Phys. 2005. Vol. 7.

Rappoport D., Furche F. Property-optimized Gaussian basis sets for molecular response calculations // Phys. Chem. Chem. Phys. 2010. Vol. 133.

Xerri B., Petitjean H., Dupeyrat F., Flament J.-P, Lorphelin A., Vidaud C., Berthomieu C., Berthomieu D. Mid-and Far-Infrared Marker Bands of the Metal Coordination Sites of the Histidine Side Chains in the Protein Cu,Zn-Superoxide Dismutase// European Journal of Inorganic Chemistry. 2014. Vol. 27.

Weigend F. Accurate Coulomb-fitting basis sets for H to Rn // Phys. Chem. Chem. Phys. 2006. Vol. 8.

Grimme S., Antony J., Ehrlich S. & Krieg H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010. Vol. 132.

Caldeweyher E., Bannwarth C., Grimme S. Extension of the D3 dispersion coefficient model // Phys. Chem. Chem. Phys. 2017. Vol. 147.

Cossi M., Rega N. & Scalmani G. et al. Energies, structures and electronic properties of molecules in solution with the CPCM solvation model. Chem. Phys. 2003. Vol. 24.

Marcus R.A., Sutin N. Electron transfers in chemistry and biology. 1985. Vol. 811 (3).

Eberson L. The Marcus theory of electron transfer, a sorting device for toxic compounds // Free radical biology and medicine. 1985. Vol. 1.

Cave R.J., Newton M.D. Calculation of electronic coupling matrix elements for ground and excited state electron transfer reactions: Comparison of the generalized Mulliken-Hush and block diagonalization methods // The Journal of Chemical Physics. 1997. Vol. 22.

Lippard S.J. Theory of Electron Transfer Reactions: Insights and Hindsights // Progress in Inorganic Chemistry 1983. Vol. 30.

Published
2022-09-09
How to Cite
Popova E., Ryabykh A., Maslova O., Beznosyuk S. Computer Simulation of Electron Transfer between the Cytochrome Active Center and Reactive Oxygen and Nitrogen Species // Izvestiya of Altai State University, 2022, № 4(126). P. 48-53 DOI: 10.14258/izvasu(2022)4-07. URL: http://izvestiya.asu.ru/article/view/%282022%294-07.

Most read articles by the same author(s)