Sufficient Conditions for Convexity and Affineness of a Continuous Map
УДК 517.965.252: 514.172
Abstract
The article establishes a criterion for the convexity of a closed set in a topological vector space: a closed set in a topological vector space is convex if and only if every segment with endpoints in this set contains at least one more point of this set. It generalizes a similar result established earlier for reflexive Banach spaces. It is used to prove a sufficient condition for the planarity of a k-dimensional manifold in an n-dimensional affine space An: if each chord of a k-dimensional surface, which is a closed set, contains some other point of the surface except its endpoints, then the surface is a k-dimensional plane or its convex subset with non-empty interior relative to this plane. These 2 statements together with the closed graph theorem are used to establish sufficient convexity and affine conditions for a continuous multivariable function. It also allows the Jensen functional equation of multivariable functions in the class of continuous functions to be solved in a new way. Proof methods are topological.
Downloads
Metrics
References
Бураго Ю.Д., Залгаллер В.А. Достаточные признаки выпуклости // Вопросы глобальной геометрии. Зап. научн. сем. ЛОМИ. Л.: Наука, 1974. Т. 45. С. 3–53.
Лейхтвейс K. Выпуклые множества. М.: Наука, 1985. 336 с.
Стрекаловский А.С. Введение в выпуклый анализ. Иркутск: Иркутский университет, 2009. 81 с.
Александров П.С. Введение в теорию множеств и общую топологию. СПб.: Лань, 2010. 368 с.
Поликанова И.В. Критерии прямолинейности кривой // Классическая и современная геометрия : матер. Международной конф., посв. 100-летию со дня рожд. проф. Левона Сергеевича Атанасяна (15 июля 1921 — 5 июля 1998), Москва, 1-4 ноября 2021 г. Ч. 1. Итоги науки и техн. Сер. Соврем. мат. и ее прил. Темат. обз., ВИНИТИ РАН. М., 2021. Т. 220. С. 86-98. DOI: 10.36535/0233-6723-2023-220-86-98
Бурбаки Н. Общая топология. Основные структуры. М.: Наука, 1968. 272 с.
Фихтенгольц Г.М. Курс дифференциального и интегрального исчисления ; в 3 т. М.: ФИЗМАТЛИТ, 2003. Т 1. 680 с. 8. Ацель Я. Некоторые общие методы в теории функциональных уравнений одной переменной. Новые применения функциональных уравнений // Успехи математических наук. 1956. Т. 11:3. № 69. С. 3-68.
Ацел Я., Домбр Ж. Функциональные уравнения с несколькими переменными. М.: ФИЗМАТЛИТ, 2003. 432 с.
Поликанова И.В. Функциональные уравнения от функций многих переменных // Труды семинара по геометрии и математическому моделированию. 2023. № 9. С. 30-45.
Copyright (c) 2024 Ирина Викторовна Поликанова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).