Existence of a Weak Solutionto the Two-Dimensional Filtration Problem in a Thin Poroelastic Layer

УДК 532.546+536.425

  • P.V. Gilev Altai State University (Barnaul, Russia) Email: pavel.gilev.2000@mail.ru
  • A.A. Papin Altai State University (Barnaul, Russia) Email: papin@math.asu.ru
Keywords: two-phase filtration, Darcy's law, saturation, poroelastic, solvability

Abstract

The paper considers a mathematical model of the joint motion of two immiscible incompressible fluids in a poroelastic medium. This model is a generalization of the classical Musket-Leverett model, in which porosity is considered to be a given function of the spatial coordinate. The model under study is based on the mass conservation equations for liquids and the porous skeleton, Darcy's law for liquids, which takes into account the movement of the porous skeleton, the Laplace formula for capillary pressure, the Maxwell-type rheological equation for porosity, and the "system as a whole" equilibrium condition. In the thin layer approximation, the original problem is reduced to the successive determination of the porosity of the solid skeleton and its velocity. Then an elliptic-parabolic system is derived for the “reduced pressure” and saturation of the wetting phase. Its solution is understood in a generalized sense due to the degeneration on the solution of the equations of the system. The proof of the existence theorem is carried out in four stages: regularization of the problem, proof of the physical maximum principle for saturation, construction of Galerkin approximations, passage to the limit in regularization parameters based on the method of compensated compactness.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

P.V. Gilev, Altai State University (Barnaul, Russia)

студент факультета математики и информационных технологий

A.A. Papin, Altai State University (Barnaul, Russia)

профессор, доктор физико-математических наук, заведующий кафедрой дифференциальных уравнений

References

Папин А.А., Подладчиков Ю.Ю. Изотермическое движение двух несмешиваю-щихся жидкостей в пороупругой среде // Известия Алт. гос. ун-та. 2015. № 1-2. DOI: 10.14258/izvasu(2015) 1.2-24

Connolly J.A.D., Podladchikov Y.Y. Compaction-driven fluid flow in viscoelasticrock // Geodin. Acta. 1998. Vol. 11.

Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. Новосибирск. 1983.

Сибин А.Н. Математическая модель поршневого вытеснения жидкости в упругой пористой среде // Сборник трудов всероссийской конференции по математике «МАК-2016». Материалы молодежной прикладной IT школы «Математическое моделирование в экологии, агроэкологии и природопользовании». 2016.

Гилев П.В., Папин А.А. Исследование задачи двухфазной фильтрации в пороупругой среде в приближении двумерной ячейки Хеле-Шоу // Сборник тезисов евразийской конференции по прикладной математике. Новосибирск, 2021.

Антонцев С.Н., Папин А.А. Приближенные методы решения задач двухфазной фильтрации // Доклады Академии наук СССР. 1979. Т. 247. № 3.

Simpson M., Spiegelman M. Weinstein M.I. Degenerate Dispersive Equations Arising in the Study of Magma Dynamics // Nonlinearity. 2007. Vol. 20 (1). DOI: 10.1088/0951-7715/20/1/003.

Tokareva M.A. Localization of solutions of the equations of filtration in poroelastic medium // Journal of Siberian Federal Universit. Mathematics and Physics. 2015. Т. 8. № 4. DOI: 10.17516/19971397-2015-8-4-467-477.

Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration in poroelastic medium // Journal of Physics: Conference Series. 2016. Т. 722. № 1. DOI: 10.1088/1742-6596/722/1/012037

Токарева М.А., Папин А.А. Глобальная разрешимость системы уравнений одномерного движения вязкой жидкости в деформируемой вязкой пористой среде // Сибирский журнал индустриальной математики. 2019. Т. 22. № 2 (78). DOI: 10.1134/S1990478919020169.

Токарева М.А., Вирц Р.А., Ларионова В.Н. Математическая модель движения жидкости в пороупругом льду с учетом фазовых переходов и движения льда // Труды семинара по геометрии и математическому моделированию. 2021. №. 7. DOI: 10.17516/1997-1397-2020-13-6-763-773.

Saad A.S., Saad B. Saad M. Numerical Study of Compositional Compressible Degenerate Two-Phase Flow In Saturated-Unsaturated Heterogeneous Porous Media // Comput. Math. Appl. 2016. Vol. 71. № 2.

Morency C., Huismans R.S., Beaumont C. Fullsack P. A Numerical Model for Coupled Fluid Flow and Matrix Deformation with Applications to Disequilibrium Compaction and Delta Stability // J. Geophys. Res. 2007. B10407. DOI: 10. 1029/2006JB004701.

Chengwei Z., Chong P., Wei W., Chun W. A multi-layer SPH method for generic water-soil dynamic coupling problems. Part I: Revisit, theory, and validation // Computer Methods in Applied Mechanics and Engineering 396 (2/3/4) 2022. DOI: 10.1016/j.cma.2022.115106.

Бочаров О.Б., Рудяк В.Я., Серяков А.В. Простейшие модели деформирования пороупру-гой среды, насыщенной флюидами // Физикотехнические проблемы разработки полезных ископаемых. 2014. № 2.

Ладыженская О.А., Солонников В.А., Уральцева Н.Н. Линейные и квазилинейные уравнения параболического типа. М., 1967.

Published
2022-09-09
How to Cite
Gilev P., Papin A. Existence of a Weak Solutionto the Two-Dimensional Filtration Problem in a Thin Poroelastic Layer // Izvestiya of Altai State University, 2022, № 4(126). P. 93-98 DOI: 10.14258/izvasu(2022)4-14. URL: http://izvestiya.asu.ru/article/view/%282022%294-14.
Section
Математика и механика