Study of a Numerical Method for Solving a Boundary Value Problem for a Differential Equation with a Fractional Time Derivative
УДК 517.927
Abstract
Recently, there has been an increased interest in the problem of numerical implementation of multiphase filtration models due to its enormous economic importance in the oil industry, hydrology, and nuclear waste management. In contrast to the classical models of filtration, filtration models in highly porous fractured formations with the fractal geometry of wells are not fully understood. The solution to this problem reduces to solving a system of differential equations with fractional derivatives. In the paper, a finite-difference scheme is constructed for solving the initial-boundary value problem for the convection-diffusion equation with a fractional time derivative in the sense of Caputo-Fabrizio. A priori estimates are obtained for solving a difference problem under the assumption that there is a solution to the problem in the class of sufficiently smooth functions that prove the uniqueness of the solution and the stability of the difference scheme. The convergence of the solution of the difference problem to the solution of the original differential problem with the second order in time and space variables is shown. The results of computational experiments confirming the reliability of theoretical analysis are presented.
Downloads
Metrics
References
Berdyshev A., Cabada A., Turmetov B. On solvability of some boundary value problem for polyharmonic equation with boundary operator of a fractional order // Applied Mathematical Modelling. 2015. T. 4. DOI: 10.1016/j.apm.2015.01.006.
Alikhanov A.A. A new difference scheme for the time fractional diffusion equation // Journal of Computational Physics. 2015. T. 280. DOI: 10.1016/j.jcp.2014.09.031.
Berdyshev A., Eshmatov B., Kadirkulov B. Boundary value problems for fourth-order mixed type equation with fractional derivative // Electronic Journal of Differential Equations. 2016. № 36.
Agarwal P., Berdyshev A., Karimov E. Solvability of a Non-local Problem with Integral Transmitting Condition for Mixed Type Equation with Caputo Fractional Derivative // Results in Mathematics. 2017. DOI: 10.1007/s00025-016-0620-1.
Бештоков М.Х. Нелокальные краевые задачи для уравнения соболевского типа с дробной производной и сеточные методы их решения // Математические труды. 2018. T. 21, № 2. DOI: 10.17377/mattrudy.2018.21.203.
Beshtokov M. Boundary value problems for degenerate and degenerate fractional order differential equations with non-local linear source and difference methods for their numerical implementation // Ufimskii Mathematicheskii Zhurnal. 2019. Т. 11, № 2.
Kanwal A., Phang C., Iqbal U. Numerical Solution of Fractional Diffusion Wave Equation and Fractional Klein-Gordon Equation via Two-Dimensional Genocchi Polynomials with a Ritz-Galerkin Method // Computation. 2018. T. 6, № 40. DOI: 10.3390/computation6030040.
Jin B., Lazarov Y., Liu Y., Zhou Z. The Galerkin finite element method for a multi-term time-fractional diffusion equation // Journal of Computational Physics. 2015. T. 281. DOI: 10.1016/j.jcp.2014.10.051.
Morales-Delgado V.F., Gomez-Aguilar J.F., Taneco-Hemandez M.A. Analytical solution of the time fractional diffusion equation and fractional convection-diffusion equation, Revista Mexicana de Fisica. 2019. T. 65. DOI: 10.31349/RevMexFis.65.82.
Liu F., Zhuang P., Burrage K. Numerical methods and analysis for a class of fractional advection-dispersion models // Computers and Mathematics with Applications. 2012. T. 64 DOI: 10.1016/j.camwa.2012.01.020.
Alikhanov A.A. A priori estimates for solutions of boundary value problems for fractional-order equations Differential Equations. 2010. T. 46. DOI: 10.1134/S0012266110050058.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).