Computer Simulation of Small Magnetic Clusters of 3d-Transition Metals of the Iron Subgroup Using the Hybrid Density Functional Method

УДК 53:004

  • S.A. Beznosyuk Altai State University (Barnaul, Russia) Email: bsa1953@mail.ru
  • A.G. Blyum Altai State University (Barnaul, Russia) Email: blyum05011991@mail.ru
  • M.S. Zhukovsky Polzunov Altai State Technical University (Barnaul, Russia) Email: zhukovsky@list.ru
  • T.M. Zhukovsky Polzunov Altai State Technical University (Barnaul, Russia) Email: 14maple10@mail.ru
  • А.S. Masalimov Karaganda State University (Karaganda, Kazakhstan) Email: masalimov-as@mail.ru
Keywords: spin-polarized states, magnetic clusters of 3d-transition metals, iron subgroups, atomization energy of clusters, hybrid density functional method, computer simulation, quantum theory of atomic clusters

Abstract

This paper presents the results of s study focused on the stability of small 3d-transition-metal magnetic clusters (metals of an iron subgroup) in spin-polarized states using the hybrid density functional method. Computer modeling and full variational optimization of geometric structures of clusters were performed for various values of the spin multiplicity of electronic states. The binding energies, the bond lengths, and the frequencies of atomic zero-point vibrations in small clusters with a nuclearity of n = 2, 3, 4, 5, 6 were calculated depending on the metal (Fe, Co, Ni) and spin multiplicity M in the zero-charge state. The calculations were carried out using the hybrid density functional B3LYP method in the def2-TZVP basis set of the ORCA package algorithms. A comparison of the calculated results with the available experimental data is presented. It is shown that the calculated data obtained by the hybrid density functional method are in satisfactory agreement with the experimental data for “naked” clusters in inert media both for the spin multiplicity of the ground state and for the energy of atomic shock dissociation of clusters in inert gas flows.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

S.A. Beznosyuk, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, заведующий кафедрой физической и неорганической химии

A.G. Blyum, Altai State University (Barnaul, Russia)

аспирант кафедры физической и неорганической химии

M.S. Zhukovsky, Polzunov Altai State Technical University (Barnaul, Russia)

кандидат химических наук, доцент кафедры информационных систем в экономике

T.M. Zhukovsky, Polzunov Altai State Technical University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры общей и экспериментальной физики

А.S. Masalimov, Karaganda State University (Karaganda, Kazakhstan)

доктор химических наук, профессор, заведующий кафедрой физической и аналитической химии

References

Armentrout P.B., Hales D.A., Lian L. Collision-Induced Dissociation of Transition Metal Cluster Ions // Advances in Metal and Semiconductor Clusters; Duncan, M.A., Ed.; JAI: Greenwich, 1994. Vol. 2.

Lian L., Su C.-X., Armentrout P.B. Collision-induced Dissociation of Nin+ (n = 2 - 18) with Xe: Bond Energies, Geometrical Structures, and Dissociation Pathways // J. Chem. Phys. 1992. Vol. 96. DOI: 10.1063/1.462406.

Lian L., Su C.-X., Armentrout P.B. Collision-induced dissociation of Fen+(n = 2-19) with Xe: Bond energies, geometric structures, and dissociation pathways // J. Chem. Phys. 1992. Vol. 97. DOI: 10.1063/1.463912.

Hales D.A., Su C.-X., Lian L., Armentrout P.B. Collision-induced Dissociation of Con+ (n = 2 - 18) with Xe: Bond Energies of Cationic and Neutral Cobalt Clusters, Dissociation Pathways, and Structures // J. Chem. Phys. 1994. Vol. 100. DOI: 10.1063/1.466636.

Castro M., Jamorski C., Salahub D.R. Structure, bonding, and magnetism of small Fe., Con, and Niclusters, n <5 // Chemical Physics Letters. 1997. Vol. 271. DOI: 10.1016/S0009-2614(97)00420-X.

Lombardi J.R., Davis B. Periodic Properties of Force Constants of Small Transition-Metal and Lanthanide Clusters // Chem. Rev. 2002. Vol. 102. DOI: 10.1021/cr010425j.

Perez M., Munoz F., Mejia-Lopez J., Martinez G. Physical and chemical properties of Co n-m Cu m nanoclusters with n = 2-6 atoms via ab-initio calculations // J. of Nanopart Res. 2012. Vol. 14. DOI: 10.1007/s11051-012-0933-2.

Gutsev G.L., Belay K.J., Gutsev L.G., Weatherford C.A. Modification of Magnetic Properties of Iron Clusters by Doping and Adsorption From a Few Atoms to Nanoclusters // Modification of Magnetic Properties of Iron Clusters by Doping and Adsorption. SpringerBriefs in Molecular Science. Springer, Cham, 2016. DOI: 10.1007/978-3-319-27886-5_1.

Becke A.D. Density-functional thermochemistry. III. The role of exact exchange // J. Chem. Phys. 1993. Vol. 98. DOI: 10.1063/1.464913.

Lee Ch., Yang W., and Parr R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density // Phys. Rev. 1988. Vol. B 37. DOI: 10.1103/PhysRevB.37.785.

ORCA, An Ab Initio, DFT and Semiempirical electronic structure package. Version 4.2.0. Department of theory and spectroscopy. Directorship: Frank Neese. Max Planck Institute fuerKohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Muelheim/Ruhr, Germany. 2019. URL: www. orcaforum.kofo.mpg.de.

Published
2020-09-09
How to Cite
Beznosyuk S., Blyum A., Zhukovsky M., Zhukovsky T., MasalimovА. Computer Simulation of Small Magnetic Clusters of 3d-Transition Metals of the Iron Subgroup Using the Hybrid Density Functional Method // Izvestiya of Altai State University, 2020, № 4(114). P. 21-26 DOI: 10.14258/izvasu(2020)4-03. URL: http://izvestiya.asu.ru/article/view/%282020%294-03.

Most read articles by the same author(s)