Кристаллическая и электронная структура галогенидов ацетилхолина

УДК 538.915:539.21

  • Кирилл Алексеевич Гордиенко Кемеровский государственный университет, Кемерово, Россия Email: gordie-kirill@rambler.ru
  • Алексей Болеславович Гордиенко Кемеровский государственный университет, Кемерово, Россия Email: gordi@kemsu.ru
  • Юрий Николаевич Журавлев Кемеровский государственный университет, Кемерово, Россия Email: zhur@kemsu.ru
Ключевые слова: теория функционала плотности, молекулярные кристаллы, галогениды ацетилхолина, зонная структура, плотность состояний

Аннотация

В работе с использованием первопринципных методов с учетом дисперсионных взаимодействий исследуются структурные и электронные характеристики биологически активных соединений на примере галогенидов ацетилхолина (ACh-Hal, Hal Cl, Br). Первоначально для молекулярной формы ACh получена картина распределения электростатического потенциала, анализ которой позволил определить оптимальную геометрию присоединения атомов галогенов в области метильных и метиленовой групп, окружающих атом азота. Это позволило объяснить основные особенности упаковки ACh-Hal в кристаллической фазе (орторомбический ACh-Cl, P212121, моноклинный ACh-Br, P21), для которых были получены параметры оптимизированной геометрии и основные характеристики электронной структуры, включая координаты атомов, значения валентных и торсионных углов, зонные структуры, значения ширины запрещенной зоны, полные и проектированные плотности состояний, а также карты распределений электронной плотности.

Скачивания

Данные скачивания пока недоступны.

Metrics

Загрузка метрик ...

Биографии авторов

Кирилл Алексеевич Гордиенко, Кемеровский государственный университет, Кемерово, Россия

аспирант кафедры теоретической физики, Институт фундаментальных наук

Алексей Болеславович Гордиенко, Кемеровский государственный университет, Кемерово, Россия

доктор физико-математических наук, профессор кафедры теоретической физики, Институт фундаментальных наук

Юрий Николаевич Журавлев, Кемеровский государственный университет, Кемерово, Россия

доктор физико-математических наук, профессор кафедры общей и экспериментальной физики, Институт фундаментальных наук

Литература

Deakyne C.A, Meot-Ner M. Ionic Hydrogen Bonds in Bioenergetics. 4. Interaction Energies of Acetylcholine with Aromatic and Polar Molecules // Journal of the American Chemical Society. 1999. Vol. 121 (7). P. 1546–1557. DOI: 10.1021/ja982549s

Maltsev V.A., Lakatta E.G. A Novel Quantitative Explanation for the Autonomic Modulation of Cardiac Pacemaker Cell Automaticity via a Dynamic System of Sarcolemmal and Intracellular Proteins // American Journal of Physiology — Heart and Circulatory Physiology. 2010. Vol. 298 (6). P. H2010–H2023. DOI: 10.1152/ajpheart.00783.2009

Van Borren M.M.G.J., Verkerk A.O., Wilders R., Hajji N., Zegers J.G., Bourier J., et al. Effects of Muscarinic Receptor Stimulation on Ca2+ Transient, cAMP Production and Pacemaker Frequency of Rabbit Sinoatrial Node Cells // Basic Research in Cardiology. 2009. Vol. 105 (1). P. 73–87. DOI: 10.1007/s00395-009-0048-9

Verkerk A.O., Remme C.A., Zebrafish: A Novel Research Tool for Cardiac (Patho)Electrophysiology and Ion Channel Disorders // Frontiers in Physiology. 2012. Vol. 3 (255). P. 1–9. DOI: 10.3389/fphys.2012.00255

Tarasova O.L., Ivanov V.I., Luzgarev S.V., Lavryashina M.B., Anan’ev V.A. Choline Intake Effects on Psychophysiological Indicators of Students in the Pre-exam Period // Foods and Raw Materials. 2021. Vol. 9 (2). P. 397–405. DOI: 10.21603/2308-4057-2021-2-397-405

Loewi O. Quantitative and Qualitative Studies on the Sympathetic Substance // Pflügers Archiv — European Journal of Physiology. 1936. Vol. 237. P. 504–517. (In Ger.).

Sletten D.M., Nickander K.K., Low P.A.. Stability of Acetylcholine Chloride Solution in Autonomic Testing // Journal of the Neurological Sciences. 2005. Vol. 234 (1-2). P. 1-3. DOI: 10.1016/j.jns.2005.02.007

de Almeida Neves P.A.A., Silva E.N., Beirao P.S.L. Microcalorimetric Study ofAcetylcholine and Acetylthiocholine Hydrolysis by Acetylcholinesterase // Advances in Enzyme Research. 2017. Vol. 5. P. 1-12. DOI: 10.4236/aer.2017.51001

Drudi F.M., Lima C., Freitas L., Yogi M., Nascimento H., Belfort R. Acetylcholine Chloride 1% Usage for Intraoperative Cataract Surgery Miosis // Revista Brasileira de Oftalmologia. 2017. Vol. 76 (5). P. 247-249. DOI: 10.5935/0034-7280.20170051

Chapple-McGruder T., Leider J.P., Beck A.J., Castruc-ci B.C., Harper E., Sellers K., et al. Examining State Health Agency Epidemiologists and Their Training Needs // Annals of Epidemiology. 2017. Vol. 27 (2). P. 83-88. DOI: 10.1016/j. annepidem.2016.11.007

Fedotova M.V., Kruchinin S.E., Chuev G.N. Hydration Features of the Neurotransmitter Acetylcholine // Journal of Molecular Liquids. 2020. Vol. 304. P. 112757 (1-8). DOI: 10.1016/j.molliq.2020.112757

Chen Q., Yang L.-P., Li D-H, Zhai J., Jiang W, Xie X. Potentiometric Determination of the Neurotransmitter Acetylcholine with Ion-selective Electrodes Containing Oxatub[4]arenes as the Ionophore. Sensors and Actuators B: Chemical. 2021. Vol. 326. P. 28836 (1-8). DOI: 10.1016/j. snb.2020.128836

Bodur O.C., Hasanoğlu Özkan E., Çolak Ö., Arslan H., Sarı N., Dişli A., et al. Preparation of Acetylcholine Biosensor for the Diagnosis of Alzheimer’s Disease // Journal of Molecular Structure. 2021. Vol. 1223. P 129168 (1-8). DOI: 10.1016/j. molstruc.2020.129168

Sörum H. The Crystal and Molecular Structure of Acetyl Choline Bromide // Acta Chemica Scandinavica. 1959. Vol. 13. P. 345-359. DOI: 10.3891/acta.chem.scand.13-0345

Svinning T., Sörum H. A Reinvestigation of the Crystal Structure of Acetylcholine Bromide // Acta Crystallographica Section B — Structural Science, Crystal Engineering and Materials. 1975. Vol. B31. P 1581-1586. DOI: 10.1107/ S0567740875005729

Allen K.W. Crystal Data of Acetylcholine Chloride // Acta Crystallographica. 1962. Vol. 15. P 1052. DOI: 10.1107/ S0365110X62002741

Herdklotz J.K., Sass R.L. The Crystal Structure of Acetylcholine Chloride: A New Conformation for Ccetylcholine // Biochemical and Biophysical Research Communications. 1970. Vol. 40 (3). P. 583-588. DOI: 10.1016/0006-291X(70)90942-3

Derreumaux P., Wilson K.J., Vergoten G., Peticolas W.L. Conformational Studies of Neuroactive Ligands. 1. Force Field and Vibrational Spectra of Crystalline Acetylcholine // Journal of Physical Chemistry. 1989. Vol. 93. P 1338-1350. DOI: 10.1021/j100341a033

Karakaya M., Ucun F Spectral Analysis of Acetylcholine Halides by Density Functional Calculations // Journal of Structural Chemistry. 2013. Vol. 54 (2). P 321-331. DOI: 10.1134/S0022476613020078

Pawlukojc A., Hetmanczyk L. INS, DFT and Temperature Dependent IR Studies of Dynamical Properties of Acetylcholine Chloride // Vibrational Spectroscopy. 2016. Vol. 82. P. 73-43. DOI: 10.1016/j.vibspec.2015.11.008

Swit P, Pollap A., Orzel J. Spectroscopic Determination of Acetylcholine (ACh): A Representative Review // Topics in Current Chemistry. 2023. Vol. 381 (16). P. 1-34. DOI: 10.1007/ s41061-023-00426-9

Allaa H.M. Spectroscopic Methods for Determination of Acetylcholine in Sagebrush Plant // Journal of Global Scientific Research. 2023. Vol. 8 (1). P. 2825-2835. DOI: 10.5281/jgsr.2023.7520720

Suzuki K., Katayama K., Sumii Y., Nakagita T., Suno R., Tsujimoto H., Iwata S., Kobayashi T., Shibata N. Kandori H. Vibrational Analysis of Acetylcholine Binding to the M2 Receptor // RSC Advances. 2021. Vol. 11. P. 12559-12567. DOI: 10.1039/d1ra01030a

Zhuravlev Y., Gordienko K., Dyagilev D., Luzgarev S., Ivanova S., Prosekov A. Structural, Electronic, and Vibrational Properties of Choline Halides // Materials Chemistry and Physics. 2020. Vol. 246. P. 122787 (1-10). DOI: 10.1016/j. matchemphys.2020.122787

Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Physical Review. 1965. Vol. 136 (3B) P B864-B871. DOI: 10.1103/PhysRev. 136.B864

Kohn W., Sham L.J. Self-consistent Equations Including Exchange and Correlation Effects // Physical Review. 1965. Vol. 140 (4A). P. A1133-A1138. DOI: 10.1103/PhysRev.140. A1133

Perdew J.P, Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Physical Review Letters. 1997. Vol. 77 (18). P. 3865-3868. DOI: 10.1103/PhysRevLett.77.3865

Valiev M., Bylaska E.J., Govind N., Kowalski K., Straatsma T.P., van Dam H.J.J., Wang D., Nieplocha J., Apra E., Windus T.L., de Jong W.A. NWChem: a Comprehensive and Scalable Open-source Solution for Large Scale Molecular Simulations // Computer Physics Communications. 2010. Vol. 181 (9). P 1477-1489. DOI: 10.1016/j.cpc.2010.04.018

Dovesi R., Saunders V.R., Roetti C., Orlando R., Zicovich-Wilson C.M., Pascale F, et al. CRYSTAL17 User’s Manual. Torino: Universita di Torino; 2017. P. 1-461.

Wadt W.R., Hay PJ. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi // Journal of Chemical Physics. 1985. Vol. 82 (1). P. 284-298. DOI: 10.1063/1.448800

Hay PJ., Wadt W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Transition Metal Atoms Sc to Hg // Journal of Chemical Physics. 1985. Vol. 82 (1). P. 270-283. DOI: 10.1063/1.448799

Monkhorst H.J., Pack J.D. Special Points for Brillouin-zone Integrations // Physical Review B. 1976. Vol. 13 (12). P. 5188-5192. DOI: 10.1103/PhysRevB.13.5188

Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu // Journal of Chemical Physics. 2010. Vol. 132. P. 154104 (1-19). DOI: 10.1063/1.3382344

Grimme S., Ehrlich S., Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory // Journal of Computational Chemistry. 2011. Vol. 32 (7). P. 1456-1465. DOI: 10.1002/jcc.21759

Frydenvang K., Jensen B. Conformational Analysis of Acetylcholine and Related Esters // Acta Crystallographica. Section B: Structural Science. 1996. Vol. B52 (1). P 184-193. DOI: 10.1107/S0108768195007567

Al-Badr A.A., El-Obeid H.A. Acetylcholine Chloride: Physical profile // Profiles of Drug Substances, Excipients, and Related Methodology. 2005. Vol. 31. P 1-19. DOI: 10.1016/ S0099-5428(04)31001-4

Опубликован
2024-04-05
Как цитировать
Гордиенко К. А., Гордиенко А. Б., Журавлев Ю. Н. Кристаллическая и электронная структура галогенидов ацетилхолина // Известия Алтайского государственного университета, 2024, № 1(135). С. 11-18 DOI: 10.14258/izvasu(2024)1-01. URL: http://izvestiya.asu.ru/article/view/%282024%291-01.