Crystal and Electronic Structure of Acetylcholine Halides
УДК 538.915:539.21
Abstract
The paper investigates the structural and electronic characteristics of biologically active compounds on the example of acetylcholine halides (ACh-Hal, Hal=Cl, Br) using the first-principle methods with consideration of dispersion interactions. Initially, the electrostatic potential distribution map of the ACh molecular form was obtained and analyzed. It helped determine the optimal attachment geometry of halogen atoms at the area of methyl and methylene groups surrounding the nitrogen atom. Also, it further enabled the explanation of the main features of ACh-Hal packing in the crystalline phase (orthorhombic ACh-Cl, P212121, monoclinic ACh-Br, P21). For this case, the optimized geometry parameters and the main characteristics of the electronic structure were obtained, including atom coordinates, valence and torsion angles, energy band structure and gaps, total and projected densities of states, and electron density distribution maps.
Downloads
Metrics
References
Deakyne C.A, Meot-Ner M. Ionic Hydrogen Bonds in Bioenergetics. 4. Interaction Energies of Acetylcholine with Aromatic and Polar Molecules // Journal of the American Chemical Society. 1999. Vol. 121 (7). P. 1546–1557. DOI: 10.1021/ja982549s
Maltsev V.A., Lakatta E.G. A Novel Quantitative Explanation for the Autonomic Modulation of Cardiac Pacemaker Cell Automaticity via a Dynamic System of Sarcolemmal and Intracellular Proteins // American Journal of Physiology — Heart and Circulatory Physiology. 2010. Vol. 298 (6). P. H2010–H2023. DOI: 10.1152/ajpheart.00783.2009
Van Borren M.M.G.J., Verkerk A.O., Wilders R., Hajji N., Zegers J.G., Bourier J., et al. Effects of Muscarinic Receptor Stimulation on Ca2+ Transient, cAMP Production and Pacemaker Frequency of Rabbit Sinoatrial Node Cells // Basic Research in Cardiology. 2009. Vol. 105 (1). P. 73–87. DOI: 10.1007/s00395-009-0048-9
Verkerk A.O., Remme C.A., Zebrafish: A Novel Research Tool for Cardiac (Patho)Electrophysiology and Ion Channel Disorders // Frontiers in Physiology. 2012. Vol. 3 (255). P. 1–9. DOI: 10.3389/fphys.2012.00255
Tarasova O.L., Ivanov V.I., Luzgarev S.V., Lavryashina M.B., Anan’ev V.A. Choline Intake Effects on Psychophysiological Indicators of Students in the Pre-exam Period // Foods and Raw Materials. 2021. Vol. 9 (2). P. 397–405. DOI: 10.21603/2308-4057-2021-2-397-405
Loewi O. Quantitative and Qualitative Studies on the Sympathetic Substance // Pflügers Archiv — European Journal of Physiology. 1936. Vol. 237. P. 504–517. (In Ger.).
Sletten D.M., Nickander K.K., Low P.A.. Stability of Acetylcholine Chloride Solution in Autonomic Testing // Journal of the Neurological Sciences. 2005. Vol. 234 (1-2). P. 1-3. DOI: 10.1016/j.jns.2005.02.007
de Almeida Neves P.A.A., Silva E.N., Beirao P.S.L. Microcalorimetric Study ofAcetylcholine and Acetylthiocholine Hydrolysis by Acetylcholinesterase // Advances in Enzyme Research. 2017. Vol. 5. P. 1-12. DOI: 10.4236/aer.2017.51001
Drudi F.M., Lima C., Freitas L., Yogi M., Nascimento H., Belfort R. Acetylcholine Chloride 1% Usage for Intraoperative Cataract Surgery Miosis // Revista Brasileira de Oftalmologia. 2017. Vol. 76 (5). P. 247-249. DOI: 10.5935/0034-7280.20170051
Chapple-McGruder T., Leider J.P., Beck A.J., Castruc-ci B.C., Harper E., Sellers K., et al. Examining State Health Agency Epidemiologists and Their Training Needs // Annals of Epidemiology. 2017. Vol. 27 (2). P. 83-88. DOI: 10.1016/j. annepidem.2016.11.007
Fedotova M.V., Kruchinin S.E., Chuev G.N. Hydration Features of the Neurotransmitter Acetylcholine // Journal of Molecular Liquids. 2020. Vol. 304. P. 112757 (1-8). DOI: 10.1016/j.molliq.2020.112757
Chen Q., Yang L.-P., Li D-H, Zhai J., Jiang W, Xie X. Potentiometric Determination of the Neurotransmitter Acetylcholine with Ion-selective Electrodes Containing Oxatub[4]arenes as the Ionophore. Sensors and Actuators B: Chemical. 2021. Vol. 326. P. 28836 (1-8). DOI: 10.1016/j. snb.2020.128836
Bodur O.C., Hasanoğlu Özkan E., Çolak Ö., Arslan H., Sarı N., Dişli A., et al. Preparation of Acetylcholine Biosensor for the Diagnosis of Alzheimer’s Disease // Journal of Molecular Structure. 2021. Vol. 1223. P 129168 (1-8). DOI: 10.1016/j. molstruc.2020.129168
Sörum H. The Crystal and Molecular Structure of Acetyl Choline Bromide // Acta Chemica Scandinavica. 1959. Vol. 13. P. 345-359. DOI: 10.3891/acta.chem.scand.13-0345
Svinning T., Sörum H. A Reinvestigation of the Crystal Structure of Acetylcholine Bromide // Acta Crystallographica Section B — Structural Science, Crystal Engineering and Materials. 1975. Vol. B31. P 1581-1586. DOI: 10.1107/ S0567740875005729
Allen K.W. Crystal Data of Acetylcholine Chloride // Acta Crystallographica. 1962. Vol. 15. P 1052. DOI: 10.1107/ S0365110X62002741
Herdklotz J.K., Sass R.L. The Crystal Structure of Acetylcholine Chloride: A New Conformation for Ccetylcholine // Biochemical and Biophysical Research Communications. 1970. Vol. 40 (3). P. 583-588. DOI: 10.1016/0006-291X(70)90942-3
Derreumaux P., Wilson K.J., Vergoten G., Peticolas W.L. Conformational Studies of Neuroactive Ligands. 1. Force Field and Vibrational Spectra of Crystalline Acetylcholine // Journal of Physical Chemistry. 1989. Vol. 93. P 1338-1350. DOI: 10.1021/j100341a033
Karakaya M., Ucun F Spectral Analysis of Acetylcholine Halides by Density Functional Calculations // Journal of Structural Chemistry. 2013. Vol. 54 (2). P 321-331. DOI: 10.1134/S0022476613020078
Pawlukojc A., Hetmanczyk L. INS, DFT and Temperature Dependent IR Studies of Dynamical Properties of Acetylcholine Chloride // Vibrational Spectroscopy. 2016. Vol. 82. P. 73-43. DOI: 10.1016/j.vibspec.2015.11.008
Swit P, Pollap A., Orzel J. Spectroscopic Determination of Acetylcholine (ACh): A Representative Review // Topics in Current Chemistry. 2023. Vol. 381 (16). P. 1-34. DOI: 10.1007/ s41061-023-00426-9
Allaa H.M. Spectroscopic Methods for Determination of Acetylcholine in Sagebrush Plant // Journal of Global Scientific Research. 2023. Vol. 8 (1). P. 2825-2835. DOI: 10.5281/jgsr.2023.7520720
Suzuki K., Katayama K., Sumii Y., Nakagita T., Suno R., Tsujimoto H., Iwata S., Kobayashi T., Shibata N. Kandori H. Vibrational Analysis of Acetylcholine Binding to the M2 Receptor // RSC Advances. 2021. Vol. 11. P. 12559-12567. DOI: 10.1039/d1ra01030a
Zhuravlev Y., Gordienko K., Dyagilev D., Luzgarev S., Ivanova S., Prosekov A. Structural, Electronic, and Vibrational Properties of Choline Halides // Materials Chemistry and Physics. 2020. Vol. 246. P. 122787 (1-10). DOI: 10.1016/j. matchemphys.2020.122787
Hohenberg P., Kohn W. Inhomogeneous Electron Gas // Physical Review. 1965. Vol. 136 (3B) P B864-B871. DOI: 10.1103/PhysRev. 136.B864
Kohn W., Sham L.J. Self-consistent Equations Including Exchange and Correlation Effects // Physical Review. 1965. Vol. 140 (4A). P. A1133-A1138. DOI: 10.1103/PhysRev.140. A1133
Perdew J.P, Burke K., Ernzerhof M. Generalized Gradient Approximation Made Simple // Physical Review Letters. 1997. Vol. 77 (18). P. 3865-3868. DOI: 10.1103/PhysRevLett.77.3865
Valiev M., Bylaska E.J., Govind N., Kowalski K., Straatsma T.P., van Dam H.J.J., Wang D., Nieplocha J., Apra E., Windus T.L., de Jong W.A. NWChem: a Comprehensive and Scalable Open-source Solution for Large Scale Molecular Simulations // Computer Physics Communications. 2010. Vol. 181 (9). P 1477-1489. DOI: 10.1016/j.cpc.2010.04.018
Dovesi R., Saunders V.R., Roetti C., Orlando R., Zicovich-Wilson C.M., Pascale F, et al. CRYSTAL17 User’s Manual. Torino: Universita di Torino; 2017. P. 1-461.
Wadt W.R., Hay PJ. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Main Group Elements Na to Bi // Journal of Chemical Physics. 1985. Vol. 82 (1). P. 284-298. DOI: 10.1063/1.448800
Hay PJ., Wadt W.R. Ab Initio Effective Core Potentials for Molecular Calculations. Potentials for Transition Metal Atoms Sc to Hg // Journal of Chemical Physics. 1985. Vol. 82 (1). P. 270-283. DOI: 10.1063/1.448799
Monkhorst H.J., Pack J.D. Special Points for Brillouin-zone Integrations // Physical Review B. 1976. Vol. 13 (12). P. 5188-5192. DOI: 10.1103/PhysRevB.13.5188
Grimme S., Antony J., Ehrlich S., Krieg H. A Consistent and Accurate Ab Initio Parametrization of Density Functional Dispersion Correction (DFT-D) for the 94 Elements H-Pu // Journal of Chemical Physics. 2010. Vol. 132. P. 154104 (1-19). DOI: 10.1063/1.3382344
Grimme S., Ehrlich S., Goerigk L. Effect of the Damping Function in Dispersion Corrected Density Functional Theory // Journal of Computational Chemistry. 2011. Vol. 32 (7). P. 1456-1465. DOI: 10.1002/jcc.21759
Frydenvang K., Jensen B. Conformational Analysis of Acetylcholine and Related Esters // Acta Crystallographica. Section B: Structural Science. 1996. Vol. B52 (1). P 184-193. DOI: 10.1107/S0108768195007567
Al-Badr A.A., El-Obeid H.A. Acetylcholine Chloride: Physical profile // Profiles of Drug Substances, Excipients, and Related Methodology. 2005. Vol. 31. P 1-19. DOI: 10.1016/ S0099-5428(04)31001-4
Copyright (c) 2024 Кирилл Алексеевич Гордиенко, Алексей Болеславович Гордиенко, Юрий Николаевич Журавлев
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).