A New Algorithm for Identifying and Quantifying of Latent Classes

УДК 519.259

  • S.V. Dronov Altai State University (Barnaul, Russia) Email: dsv@math.asu.ru
  • A.Yu. Shelar Altai State University (Barnaul, Russia) Email: shelaranton@gmail.com
Keywords: objective partitioning, cluster analysis, latent class analysis, big data

Abstract

Processing large amounts of data can be greatly simplified if this data is divided into approximately homogeneous groups. Splitting into such groups is the task of cluster analysis. However, the question of constructing an objective, natural partition into clusters remains open. The paper considers a modern approach to the search for such an objective cluster structure by highlighting the indicator of a common essential part from the set of characteristics that define objects (we call them the forming ones). When this indicator is fixed, the remains of the forming characteristics become independent or close to such. The resulting independent residuals are interpreted as a kind of information noise, and the latent cluster variable, the common fixed part that provides such a transformation, can be a reason for the objective integration of objects into clusters. A new algorithm for the formation of a cluster partition based on the proximity or coincidence of the values of a latent cluster variable with the simultaneous quantification of its values is proposed. The algorithm is based on the targeted search of partitions, the transition from the start one to the partition, more close to the objective. The algorithm proposed in the paper can be easily modified to the case of non-numeric categorized characteristics.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

S.V. Dronov, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры математического анализа

A.Yu. Shelar, Altai State University (Barnaul, Russia)

магистрант Института математики и информационных технологий

References

Johnson J.M., Khoshgoftaar T.M. Survey on deep learning with class imbalance // J. Big Data. 2019. Vol. 6, 27. DOI 10.1186/s40537-019-0192-5.

Wu J., Dong M., Ota K., Li J. and Guan Z. Big Data Analysis-Based Secure Cluster Management for Optimized Control Plane in Software-Defined Networks // IEEE Transactions on Network and Service Management. 2018. Vol. 15. DOI: 10.1109/TNSM.2018.2799000.

Chen M., Mao S., Zhang Y., Leung V. Big Data. Related Technologies, Challenges, and Future Prospects. Spinger, 2014. DOI: 10.1007/978-3-319-06245-7.

Romesburg H.Ch. Cluster analysis for researchers. Lulu Press, 2007.

Chance B.L., Rossman A.J. Investigating statistical concepts, applications, and methods. Duxbury Press, 2013.

Mulaik S.A. Foundations of Factor Analysis. Boca Raton, 2009.

Bryukhanova E.A., Chekryzhova O.I., Dronov S.V. Spatial Approach to the Analysis of the Employment Data in Siberia Based on the 1897 Census (the Experience of the Multivariate Statistical Analysis of the Districts Data) // Journal of Siberian Federal University. Humanities & Social Sciences. 2016. № 7. DOI: 10.17516/1997-1370-20169-7-1651-1660.

Dronov S.V., Sazonova A.S. Two approaches to cluster variable quantification // Model Assisted Statistics and Applications. 2015. Vol. 10.

Vermunt J.K., Magidson J. Latent class cluster analysis // Applied latent class analysis. 2002. Vol. 11.

Rindskopf D. Latent Class Analysis. The SAGE Handbook of Quantitative Methods in Psychology. N.Y., 2009.

Gribel, D., Vidal T. HG-means: A scalable hybrid metaheuristic for minimum sum-of-squares clustering // Pattern Recognition. 2019. 88 (1). arXiv: 1804.09813.

Федоряева Т.И. Комбинаторные алгоритмы: учебное пособие. Новосибирск, 2011.

Дронов С.В. Методы и задачи многомерной статистики. Барнаул, 2015.

Published
2020-09-10
How to Cite
Dronov S., Shelar A. A New Algorithm for Identifying and Quantifying of Latent Classes // Izvestiya of Altai State University, 2020, № 4(114). P. 81-85 DOI: 10.14258/izvasu(2020)4-12. URL: https://izvestiya.asu.ru/article/view/%282020%294-12.
Section
Математика и механика