Aboute Symmetric Ricci Flow On the Three-Dimensional Heisenberg Group
УДК 514.765
Abstract
The Ricci flow equation was first studied by R. Hamilton for the Levi-Civita connection. It plays an important role in Riemannian geometry. The class of semi-symmetric connections, described first by E. Cartan, contains the Levi-Civita connection. Thus, it is natural to consider the Ricci flow on Riemannian manifolds with a semi-symmetric connection.
It is known that the Ricci tensor of a semi-symmetric connection is, generally speaking, not symmetric. Therefore, it is necessary to consider the symmetric part of the Ricci tensor and the symmetric Ricci flow with respect to this tensor.
This paper studies the symmetric Ricci flow on three-dimensional unimodular Lie groups with a semi-symmetric connection. The flow equation in the J. Milnor coordinate system is reduced to a system of algebraic and differential equations. The symmetric Ricci flow on a three-dimensional unimodular group with the J. Milnor metric with respect to a semi-symmetric connection is found by sequentially solving the subsystem of algebraic equations and then substituting the obtained solution into the system of differential equations.
The three-dimensional Heisenberg group is considered as a test example.
Downloads
Metrics
References
Cartan E. Sur les Variétés à Connexion Affine et la Théorie de la Relativité Généralisée (Deuxi`eme Partie) // Annales Scientifiques de l’Ecole Normale Sup´erieure. 1925. Vol. 42. P. 17–88.
Hamilton R.S. Three-Manifolds with Positive Ricci Curvature // Journal of Differential Geometry. 1982. Vol. 17. No 2. P. 255–306.
Milnor J. Curvature of Left Invariant Metric on Lie Groups // Advances in Mathematics. 1976. Vol. 21. P. 293–329.
Onda K. Ricci Flow on 3-Dimensional Lie Groups and 4-Dimensional Ricci-Flat Manifolds // arXiv:0906.1035. 2010. P. 1-25.
Knopf D., McLeod K. Quasi-Convergence of Model Geometries Under the Ricci Flow // Communications in Analysis And Geometry. 2001. Vol. 9. No 4. P. 879-919.
Klepikov P.N., Rodionov E.D., Khromova O.P Einstein’s Equation on Three-Dimensional Metric Lie Groups with Vector Torsion // Journal of Mathematical Sciences: Springer Publishing House. November 2023. Vol. 276. No 6. P 733-745.
Павлова А.А., Хромова О.П. О симметрических потоках Риччи полусимметричных связок числа в трехмерных метрических группах Ли // Материалы международных конференций «Лобачевские чтения». Казань: Изд-во КФУ, 2022 С. 96-97.
Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на метрических групп Ли с полусимметричной связностью // Итоги науки и техники. Современная математика и ее приложения. Тематическое обзоры. М.: ВИНИТИ РАН, 2023. С. 19-29. DOI: 10.36535/0233-6723-2023-222-19-29
Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на трехмерных неунимодуляр-ных группах Ли с левоинвариантной лоренцевой метрикой и полусимметрической связностью // Сибирские электронные математические известия. 2023. Т. 20. № 1. С. 48-61. DOI: 10.33048/semi.2023.20.005
Клепиков П.Н., Родионов Е.Д., Хромова О.П. Трехмерные неунимодулярные группы Ли с римановой метрикой инвариантного солитона Риччи и полусимметричной метрической связностью // Известия вузов. Математика. 2022. № 5. С. 80-85. DOI: 10.26907/0021-3446-2022-5-80-85
Copyright (c) 2025 Данила Сергеевич Григорьев, Дмитрий Николаевич Оскорбин, Евгений Дмитриевич Родионов, Олеся Павловна Хромова

This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



