Aboute Symmetric Ricci Flow On the Three-Dimensional Heisenberg Group

УДК 514.765

  • Danila S. Grigoryev Altai State University, Barnaul, Russia Email: danila.grigoryev.2019@mail.ru
  • Dmitry N. Oskorbin Moscow Institute of Physics and Technology, Dolgoprudny, Russia Email: oskorbin@yandex.ru
  • Evgeny D. Rodionov Altai State University, Barnaul, Russia Email: edr2002@mail.ru
  • Olesya P. Khromova Altai State University, Barnaul, Russia Email: khromova.olesya@gmail.com
Keywords: symmetric Ricci flow, three-dimensional uni-modular Lie groups, Heisenberg group

Abstract

The Ricci flow equation was first studied by R. Hamilton for the Levi-Civita connection. It plays an important role in Riemannian geometry. The class of semi-symmetric connections, described first by E. Cartan, contains the Levi-Civita connection. Thus, it is natural to consider the Ricci flow on Riemannian manifolds with a semi-symmetric connection.

It is known that the Ricci tensor of a semi-symmetric connection is, generally speaking, not symmetric. Therefore, it is necessary to consider the symmetric part of the Ricci tensor and the symmetric Ricci flow with respect to this tensor.

This paper studies the symmetric Ricci flow on three-dimensional unimodular Lie groups with a semi-symmetric connection. The flow equation in the J. Milnor coordinate system is reduced to a system of algebraic and differential equations. The symmetric Ricci flow on a three-dimensional unimodular group with the J. Milnor metric with respect to a semi-symmetric connection is found by sequentially solving the subsystem of algebraic equations and then substituting the obtained solution into the system of differential equations. 

The three-dimensional Heisenberg group is considered as a test example.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Danila S. Grigoryev, Altai State University, Barnaul, Russia

Master Student of the Institute of Mathematics and Information Technologies

Dmitry N. Oskorbin, Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Higher Mathematics

Evgeny D. Rodionov, Altai State University, Barnaul, Russia

Doctor of Sciences in Physics and Mathematics, Professor of the Department of Mathematical Analysis

Olesya P. Khromova, Altai State University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Mathematical Analysis

References

Cartan E. Sur les Variétés à Connexion Affine et la Théorie de la Relativité Généralisée (Deuxi`eme Partie) // Annales Scientifiques de l’Ecole Normale Sup´erieure. 1925. Vol. 42. P. 17–88.

Hamilton R.S. Three-Manifolds with Positive Ricci Curvature // Journal of Differential Geometry. 1982. Vol. 17. No 2. P. 255–306.

Milnor J. Curvature of Left Invariant Metric on Lie Groups // Advances in Mathematics. 1976. Vol. 21. P. 293–329.

Onda K. Ricci Flow on 3-Dimensional Lie Groups and 4-Dimensional Ricci-Flat Manifolds // arXiv:0906.1035. 2010. P. 1-25.

Knopf D., McLeod K. Quasi-Convergence of Model Geometries Under the Ricci Flow // Communications in Analysis And Geometry. 2001. Vol. 9. No 4. P. 879-919.

Klepikov P.N., Rodionov E.D., Khromova O.P Einstein’s Equation on Three-Dimensional Metric Lie Groups with Vector Torsion // Journal of Mathematical Sciences: Springer Publishing House. November 2023. Vol. 276. No 6. P 733-745.

Павлова А.А., Хромова О.П. О симметрических потоках Риччи полусимметричных связок числа в трехмерных метрических группах Ли // Материалы международных конференций «Лобачевские чтения». Казань: Изд-во КФУ, 2022 С. 96-97.

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на метрических групп Ли с полусимметричной связностью // Итоги науки и техники. Современная математика и ее приложения. Тематическое обзоры. М.: ВИНИТИ РАН, 2023. С. 19-29. DOI: 10.36535/0233-6723-2023-222-19-29

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на трехмерных неунимодуляр-ных группах Ли с левоинвариантной лоренцевой метрикой и полусимметрической связностью // Сибирские электронные математические известия. 2023. Т. 20. № 1. С. 48-61. DOI: 10.33048/semi.2023.20.005

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Трехмерные неунимодулярные группы Ли с римановой метрикой инвариантного солитона Риччи и полусимметричной метрической связностью // Известия вузов. Математика. 2022. № 5. С. 80-85. DOI: 10.26907/0021-3446-2022-5-80-85

Published
2025-04-03
How to Cite
Grigoryev D. S., Oskorbin D. N., Rodionov E. D., Khromova O. P. Aboute Symmetric Ricci Flow On the Three-Dimensional Heisenberg Group // Izvestiya of Altai State University, 2025, № 1(141). P. 95-98 DOI: 10.14258/izvasu(2025)1-12. URL: https://izvestiya.asu.ru/article/view/%282025%291-12.