Grain Boundary Simulation: the Role of the Interatomic Potential

  • А.В. Векман Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия) Email: weckman@list.ru
  • Б.Ф. Демьянов Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия) Email: bfdemyanov@mail.ru
  • А.С. Драгунов Университет Инха (Ташкент, Узбекистан) Email: andrey.dragunov@gmail.com
Keywords: computer modelling, potential interaction, grain boundary, molecular statics, molecular dynamics

Abstract

The review compares simulation results of differentlevels of atomic structure complexity with the useof the Morse pair potential and the Cleri-Rosato manybodypotential. The parameters of the potential functionscorrespond to those of aluminum. We have calculatedthe perfect crystal energy, the structure and energyof vacancy forming, and the structure and energyof special grain boundary GB S5(013). Also, we havesimulated the process of grain boundary self-diffusion.The comparative analysis has shown that pair potentialsand many-body potentials have results of similar qualityin the molecular dynamic experiment. The perfectcrystal energies calculated with the considerationof three coordination spheres coincide. Atomic positionsin the vacancy area differ by the value not exceeding0.1 Å. A grain boundary structure does not dependon the potential choice as the difference between atomicpositions does not exceed 0.1 Å which is 2.5% of the latticeparameter. The simulation of the self-diffusion processalong GB has been performed in the temperature rangefrom 600 K up to the melting point. Each Arrhenius plot hastwo linear parts. A change in the tilt of the Arrhenius plotsis the proof of the change in the self-diffusion mechanism.We have obtained relatively similar temperature valuesat which diffusion mechanisms change with the useof different interaction potentials. The activation energiesof self-diffusion have relatively similar values.

DOI 10.14258/izvasu(2018)1-01

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

А.В. Векман, Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия)
кандидат физико-математических наук, доцент, доцент кафедры физики Алтайского государственного технического универитета
Б.Ф. Демьянов, Алтайский государственный технический университет им. И.И. Ползунова (Барнаул, Россия)
доктор физико-математических наук, профессор, профессор кафедры физики Алтайского государственного технического универитета
А.С. Драгунов, Университет Инха (Ташкент, Узбекистан)
кандидат физико-математических наук, доцент Школы компьютерной и информационной инженерии университета Инха

References

Jones J.E. On the Determination of Molecular Fields II. From the equation of state of a gas // Proc. Roy. Soc. Lond. Series A. — 1924. — V. 106, N738.

Born M., Mayer J.E. Zur Gittertheorie der Ionenkristalle // Zeitschrift für Physik. — 1932. — V. 75, N1–2.

Morse P.M. Diatomic molecules according to the wave mechanics. II. Vibrational levels // Phys. Rev. — 1929. — V. 34, N1.

Finnis M.W., Sinclair J.E. A simple empirical N-body potential for transition metals // Phil. Mag. A. — 1984. — V. 50, N1.

Rafii-Tabar H., Sulton A.P. Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys // Phil. Mag. Lett. — 1991. — V. 63, N4.

Foiles S.M., Baskes M.I., Daw M.S. Embedded-atommethod functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys // Phys. Rev. B. — 1986. — V. 33, N12.

Pasianot R., Farkas D., Savino E.J. Empirical manybody interatomic potential for bcc transition metals // Phys. Rev. B. — 1991. — V. 43, N9.

Hofmann D., Finnis M.W. Theoretical and experimental analysis of near Σ=3(211) boundaries in silver // Acta Met. — 1994. — V. 42, N10.

Bacia M., Morillo J., Penisson J.M., Pontikis V. Atomic structure of the S=5(210) and (310), [001] tilt axis grain boundaries in Mo: a joint study by computer simulation and high-resolution electron microscopy // Phil. Mag. — 1997. — V. 76, N5.

Tschopp M.A., Mcdowell D.L. Structures and energies of S3 asymmetric tilt grain boundaries in copper and aluminium // Phil. Mag. — 2007. — V. 87, N22.

Mishin Y., Asta M., Li J. Atomistic modeling of interfaces and their impact on microstructure and properties // Acta Mater. — 2010. — V. 58, N4.

Gautam A., Ophus C., Lancon F., Radmilovic V., Dahmen U. Atomic structure characterization of an incommensurate grain boundary // Acta Mater. — 2013. — V. 61, N13.

Homer E.R., Foiles S.M., Holm E.A., Olmsted D.L. Phenomenology of shear-coupled grain boundary motion in symmetric tilt and general grain boundaries // Acta Mater. — 2013. — V. 61, N4.

Frolov T., Asta M., Mishin Y. Segregation-induced phase transformations in grain boundaries // Phys. Rev. B. — 2015. — V. 92, N2.

Бачурин Д.В., Мурзаев Р.Т., Назаров А.А. Атомное компьютерное и дисклинационное моделирование границ наклона [001] в никеле и меди // Физика металлов и металловедение (ФММ). — 2003. — Т. 96, №6.

Бачурин Д.В., Назаров А.А. Влияние относительного сдвига под действием внешнего напряжения на структуру и энергию границы наклона Σ=5(210) )[001] в никеле // ФММ. — 2004. — Т. 98, №1.

Мурзаев Р.Т., Назаров А.А. Энергия образования вакансий в границах наклона [001] в никеле: компьютерное моделирование // ФММ. — 2005. — Т. 100, №3.

Мурзаев Р.Т., Назаров А.А. Энергия активации миграции вакансии в границах наклона [001] в никеле // ФММ. — 2006. — Т. 101, №1.

Wolf D. Structure-energy correlation for grain boundaries in fcc metals. I. Boundaries on the (111) and (100) planes // Acta Met. — 1989. — V. 37, N7.

Wolf D. Structure-energy correlation for grain boundaries in fcc metals. III. Symmetrical tilt boundaries // Acta Met. — 1990. — V. 38, N5.

Wolf D. Correlation between the energy and structure of grain boundaries in bcc metals. I. Symmetrical boundaries on the (110) and (100) planes // Phil. Mag. B. — 1989. — V. 59, N6.

Wolf D. Correlation between the energy and structure of grain boundaries in bcc metals. II. Symmetrical tilt boundaries // Phil. Mag. A. — 1990. — V. 62, N4.

Wolf D. Structure-energy correlation for grain boundaries in fcc metals. IV. Asymmetrical twist (general) boundaries // Acta Met. — 1990. — V. 38, N5.

Wolf D. A broken-bond model for grain boundaries in face-centred cubic metals // J. Appl. Phys. — 1990. — V. 68, N7.

Wolf D. Structure and energy of general grain boundaries in bcc metals // J. Appl. Phys. — 1991. — V. 69, N1.

MacLaren J.M., Crampin S., Vvedensky D.D., Eberhart M.E. Mechanical stability and charge densities near stacking faults // Phys. Rev. Lett. — 1989. — V. 63, N23.

Chen S.P., Srolovitz D.J., Voter A.F. Computer simulation on surfaces and [001] symmetric tilt grain boundaries in Ni, Al and Ni3Al // J. Mater Res. — 1989. — V. 4, N1.

Farkas D., Savino E.J., Chidambaram P. Oscillatory relaxations in (111) planar defects in Ni3Al // Phil. Mag. A. — 1989. — V. 60, N4.

Носкова Н.И. Дефекты и деформация монокристаллов. — Екатеринбург, 1995.

Wright A.F., Atlas S.R. Density-functional calculations for grain boundaries in aluminum // Phys. Rev. B. — 1994. —V. 50, N2.

Харина Е.Г., Старостенков М.Д., Полетаев Г.М., Ракитин Р.Ю. Энергия активации самодиффузии по симметричным границам зерен наклона <111> в интерметаллиде Ni3Al // ФТТ. — 2011. — Т. 53, №5.

Holian B.L., Ravelo R. Fracture simulations using largescale molecular dynamics // Phys. Rev.B. — 1995. — V. 51, N17.

Драгунов А.С., Векман А.В., Демьянов Б.Ф. Теоретическая модель границ зерен наклона общего и специального типа для ГЦК кристаллов // Ползуновский альманах. — 2011. — № 4.

Векман А.В., Драгунов А.С., Демьянов Б.Ф., Адарич Н.В. Энергетический спектр границ зерен наклона в меди // Известия вузов. Физика. — 2012. — Т. 55, №7.

Векман А.В., Демьянов Б.Ф., Старостенков М.Д. Ориентационная зависимость энергии границ зерен в металлах с объемноцентрированной кубической решеткой // Известия вузов. Черная металлургия. — 2001. — №2.

Драгунов А.С., Демьянов Б.Ф., Векман А.В. Энергия симметричных границ зерен наклона в алюминии // Ползуновский альманах. — 2009. — Т. 2, №3.

Козлов Э.В., Попов Л.Е., Старостенков М.Д. Расчет потенциалов Морзе для твердого золота // Известия вузов. Физика. — 1972. — №3.

Царегородцев А.И., Горлов Н.В., Демьянов Б.Ф., Старостенков М.Д.. Атомная структура антифазной границы и ее влияние на состояние решетки вблизи дислокации в упорядоченных сплавах со сверхструктурой L12 // ФММ. — 1984 — Т. 58, №2.

Cleri F., Rosato V. Tight-binding potentials for transition metals and alloys // Phys. Rev. B. — 1993. — V. 48, N1.

Cosandey F., Chan S.-W., Stadelmann P. HREM studies of [001] tilt grain boundaries in gold // Colloque De Physique. Colloque Cl. — 1990. — V. 51, N1.

Merkle K. L., Smith D.J. Atomic structure of symmetric tilt grain boundaries in NiO // Phys. Rev. Lett. — 1987. — V. 59, N25.

Shamsuzzoha M., Vazquer I., Deymier P.A., Smith D.J. The atomic structure of a Σ=5[001]/(310) grain boundary in an Al-5% Mg alloy by high-resolution electron microscopy // Interface Science. — 1996. — V. 3, N3.

Lee S.B., Lee J.-H., Cho Y.-H., Kim D.-Y., Sigle W., Phillipp F; van Aken P.A. Grain-boundary plane orientation dependence of electrical barriers at S5 boundaries in SrTiO3 // Acta Mater. — 2008. V. 56, N18.

Frolov T., Olmsted D.L., Asta M., Mishin Y. Structural phase transformations in metallic grain boundaries // Nature Communications. — 2013. — N4.

Budke E., Surholt T., Prokofjev S.I., Shvindlerman L.S., Herzig Chr. Tracer diffusion of Au and Cu in a series of near Σ=5(310)[001] symmetrical Cu tilt grain boundaries // Acta Mater. — 1999. — V. 47, N2.

Divinski S.V. , Edelhoff H., Prokofjev S. Diffusion and segregation of silver in copper S5(310) grain boundary // Phys. Rev. B. — 2012. — V. 85, N14.

Siegel R.W. Vacancy concentrations in metals // J. Nucl. Mater. — 1978. — V. 69–70.

Balluffi R.W. Vacancy defect mobilities and binding energies obtained from annealing studies // J. Nucl. Mater. — 1978. — V. 69–70

McKee B.T.A., Triftshäuser W., Stewart A.T. Vacancyformation energies in metals from positron annihilation // Phys. Rev. Lett. — 1972. — V. 28, N6.

Бокштейн Б.С. Атомы блуждают по кристаллу / под ред. Л.Г. Асламазова. — М., 1984.

Published
2018-03-06
How to Cite
Векман А., Демьянов Б., Драгунов А. Grain Boundary Simulation: the Role of the Interatomic Potential // Izvestiya of Altai State University, 2018, № 1(99). P. 11-18 DOI: 10.14258/izvasu(2018)1-01. URL: http://izvestiya.asu.ru/article/view/%282018%291-01.