Basis Set Selection for Calculation of Structural and Electronic Properties of Systems Incorporating a Superoxide Radical in an Aqueous Medium

УДК 541.1

  • A.V. Ryabykh Altai State University (Barnaul, Russia) Email: ryabykh.642@gmail.com
  • M.A. Pirogov Altai State University (Barnaul, Russia) Email: pirogow1998@mail.ru
  • O.A. Maslova Altai State University (Barnaul, Russia) Email: maslova_o.a@mail.ru
  • S.A. Beznosyuk Altai State University (Barnaul, Russia) Email: bsa1953@mail.ru
Keywords: condensed matter physics, continuum models of the dielectric medium of a solvent, oxygen superoxide ion, electron affinity energy, density functional method, computer simulation, polarizability

Abstract

In this work, computer simulation has been carried out, and the molecular parameters of oxygen and a superoxide ion have been calculated to select the most optimal basis set of functions for further quantum mechanical calculations that include the presence of reactive oxygen species. For each particle, the equilibrium bond lengths and averaged polarizabilities in a continuous dielectric aqueous medium are obtained with the Conductor-like Polarizable Continuum Model (CPCM) and Solvation Model based on Density (SMD). Calculations for the 16 basic sets are conducted using the Orca software package. The obtained numerical values are compared with experimental data. The electron affinity energy of the oxygen molecule is used as the main selection criterion. The total time of computer calculations for each basis set is considered, and the most optimal basis sets are selected. The basis sets 6-31+G(d), 6-311+G, def2-TZVPD, and aug-cc-pVDZ are recommended for numerical calculations of molecular systems incorporating molecular oxygen and superoxide radical as its reduction product.

Downloads

Metrics

PDF views
313
Mar 19 '21Mar 22 '21Mar 25 '21Mar 28 '21Mar 31 '21Apr 01 '21Apr 04 '21Apr 07 '21Apr 10 '21Apr 13 '213.0
| |

Author Biographies

A.V. Ryabykh, Altai State University (Barnaul, Russia)

аспирант

M.A. Pirogov, Altai State University (Barnaul, Russia)

студент

O.A. Maslova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры физической и неорганической химии

S.A. Beznosyuk , Altai State University (Barnaul, Russia)

профессор, доктор физико-математических наук, заведующий кафедрой физической и неорганической химии

References

Barja G. Mitochondrial Oxygen Radical Generation and Leak: Sites of Production in States 4 and 3, Organ Specificity, and Relation to Aging and Longevity // J. Bioenergetics and Biomembranes. 1999. Vol. 31.

Dawson T.M., Dawson V.L. Molecular Pathways of Neurodegeneration in Parkinson’s Disease // Science. 2003. Vol. 302 (5646). DOI: 10.1126/science.1087753.

Rienstra-Kiracofe J.C., Tschumper G.S., Shaefer H.F. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations // Chem. Rev. 2002. Vol. 102. DOI: 10.1021/cr990044u.

ORCA, An Ab Initio, DFT and Semiempirical electronic structure package. Version 4.2.0. Department of theory and spectroscopy. Directorship: Frank Neese. Max Planck Institute fuer Kohlenforschung, Kaiser Wilhelm Platz 1, D-45470 Muelheim/Ruhr, Germany. 2019. URL: www. orcaforum.kofo.mpg.de.

Krishnan R., Binkley J.S., Seeger R., Pople J.A. Self-consistent molecular orbital methods. XX. A basis set for correlated wave functions // J. Chem. Phys. 1980. Vol. 72. DOI: 10.1063/1.438955.

Gill PM.W, Johnson B.G., Pople J.A., Frisch M.J. The performance of the Becke—Lee—Yang—Parr (B—LYP) density functional theory with various basis sets // Chem. Phys. Lett. 1992. Vol. 197. DOI: 10.1016/0009-2614(92)85807-M.

Weigend F., Ahlrichs R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy // Phys. Chem. Chem. Phys. 2005. Vol. 7. DOI: 10.1039/b508541a.

Kendall R.A., Dunning T.H., Harrison R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions // J. Chem. Phys. 1992. Vol. 96. DOI: 10.1063/1.462569.

Cossi M., Rega N., Scalmani G., Barone V., Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model // Chem. Phys. 2003. Vol. 24. № 6. DOI: 10.1002/jcc.10189.

Marenich A.V., Cramer C.J., Truhlar D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions // J. Phys. Chem. B. 2009. Vol. 113, 18. DOI: 10.1021/jp810292n.

Huber K.P, Herzberg G., Molecular Spectra and Molecular Structure: IV Constants of Diatomic Molecules. New York, 1979. DOI: 10.1007/978-1-4757-0961-2.

Olney T.N., Cann N.M., Cooper G., Brion C.E. Absolute scale determination for photoabsorption spectra and the calculation of molecular properties using dipole sum-rules // Chem. Phys. 1997. Vol. 223. DOI: 10.1016/S0301-0104(97)00145-6.

Рябых А.В., Маслова О.А., Безносюк С.А., Жуковский М.С., Масалимов А.С. Компьютерное моделирование устойчивости супероксид-иона O2- в континуальной диэлектрической среде // Известия АлтГУ 2020. № 1. DOI: 10.14258/izvasu(2020)1-05.

Published
2021-03-17
How to Cite
Ryabykh A., Pirogov M., Maslova O., Beznosyuk S. Basis Set Selection for Calculation of Structural and Electronic Properties of Systems Incorporating a Superoxide Radical in an Aqueous Medium // Izvestiya of Altai State University, 2021, № 1(117). P. 53-57 DOI: 10.14258/izvasu(2021)1-08. URL: http://izvestiya.asu.ru/article/view/%282021%291-08.

Most read articles by the same author(s)