Numerical Modeling of Biogeochemical Carbon Cycles in Swamp Ecosystems

УДК 574.4:52-17

  • E.A. Dyukarev Yugra State University (Khanty-Mansiysk, Russia) Email: dekot@mail.ru
  • S.P. Semenov Yugra State University (Khanty-Mansiysk, Russia) Email: ssp@ugrasu.ru
Keywords: carbon cycle, greenhouse effect, biogeochemical cycle, mathematical model, singular points, phase portrait, focus, limit cycle

Abstract

A dynamic model of biogeochemical carbon cycles in swamp ecosystems is proposed. There are fast and slow biogeochemical cycles. Fast cycles operate in the biosphere and include photosynthesis, vegetative growth, and decomposition. Swamp ecosystems are one of the significant reservoirs of biogeochemical cycles. It is known that huge reserves of carbon in the form of slightly decomposed organic matter are preserved in the swamps. They are active sources of methane and carbon dioxide runoff from the atmosphere.

Mathematical models of dynamic processes in ecology can be divided into two categories: quantitative and qualitative. Quantitative models, as a rule, are aimed at solving problems of predicting numerical indicators of the dynamics of real systems. They must be modified to consider specific climatic conditions, special types of swamp vegetation, and hydrological regime for their successful application.

Qualitative models written as systems of differential equations assume the finding of singular points, their classification and study for stability, the construction of phase portraits, etc. Such models rarely lend themselves to quantitative verification, but provide important knowledge and understanding of processes in nature. A qualitative study of the system of ordinary differential equations describing carbon cycles is carried out, the types of singular points are investigated, integral curves and phase portraits are constructed.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

E.A. Dyukarev, Yugra State University (Khanty-Mansiysk, Russia)

кандидат физико-математических наук, ведущий научный сотрудник Научно-образовательного центра — кафедры ЮНЕСКО «Динамика окружающей среды и глобальные изменения климата»

S.P. Semenov, Yugra State University (Khanty-Mansiysk, Russia)

кандидат физико-математических наук, доцент кафедры цифровых технологий Института цифровой экономики

References

Список парниковых газов МГЭИК. https:// en.wikipedia.org/w/index.php?title = IPCC_list_of_ greenhouse_gases&oldid=1087125822 (дата обращения: 06.06.2022).

Блог Стива Истербрука. http://www.easterbrook.ca/ steve/ 2015/08/who-first-coined-the-term-greenhouse-effect/].

Сайт: Обсерватория Земли НАСА. Углеродный цикл. https://earthobservatory.nasa.gov.

Кашапов Р.Ш. Основные факторы и особенности пространственно-временной дифференциации углеродных циклов // Вестник Удмуртского ун-та. Серия: Биология. Науки о земле. 2008. Вып. 1.

Janse J.H., van Dam A., Hes E.M.A., de Klein J.J.M., Finlayson M. et al. Towards a global model for wetlands ecosystem services // Current Opinion in Environmental Sustainability. 2019. № 36.

Farmer J., Matthews R., Smith J.U., Smith P., Singh, B.K. Assessing existing peatland models for their applicability for modelling greenhouse gas emissions from tropical peat soils. Curr. Opin. Environ. Sustain. 2011. № 3.

Asaeda T., Baniya M.B., Rashid M.H. Effect of floods on the growth of Phragmites japonica on the sediment bar of regulated rivers: a modelling approach // Int J River Basin Manage. 2011. № 9.

Тарко А.М. Антропогенные изменения глобальных биосферных процессов // Математическое моделирование. М., 2005.

Кондратьев К.Я., Крапивин В.Ф. Моделирование глобального круговорота углерода. М., 2004.

Завалишин Н.Н., Логофет Д.О. Моделирование экологических систем по заданной диаграмме «запасы — потоки» // Математическое моделирование. 1997. Т. 9. № 9.

Федотов А.М., Медведев С.Б., Пестунов А.И., Пестунов И.А. О нестандартном поведении минимальной модели углеродного цикла // Вестник НГУ. Серия: Информационные технологии. 2011. Т. 9. Вып. 1.

Famiglietti C.A., Smallman T.L., Levine P.A., Flack-Prain S. et al. Optimal model complexity for terrestrial carbon cycle prediction // Biogeosciences. 2021. № 18. https://doi. org/10.5194/bg-18-2727-2021.

Эрроусмит Д.К., Плейс К. Обыкновенные дифференциальные уравнения: Качественная теория с приложениями. М., 1986.

Published
2022-09-09
How to Cite
Dyukarev E., Semenov S. Numerical Modeling of Biogeochemical Carbon Cycles in Swamp Ecosystems // Izvestiya of Altai State University, 2022, № 4(126). P. 104-109 DOI: 10.14258/izvasu(2022)4-16. URL: http://izvestiya.asu.ru/article/view/%282022%294-16.
Section
Математика и механика

Most read articles by the same author(s)