On the Conformal Factor in the Conformal Analogue of the Killing Equation on Cahen — Wallach Manifolds with Zero Weyl Tensor

УДК 514.76

  • Dmitry N. Oskorbin Moscow Institute of Physics and Technology, Dolgoprudny, Russia Email: oskorbin@yandex.ru
  • Eugene D. Rodionov Moscow Institute of Physics and Technology, Dolgoprudny, Russia Email: edr2002@mail.ru
Keywords: conformally Killing vector fields, Lorentzian manifolds, symmetric spaces, Killing vector fields, Cahen — Wallach manifolds

Abstract

Conformally Killing vector fields play an important role in the study of the group of conformal transformations of a manifold, Ricci flows on a manifold, and the theory of Ricci solitons. Lorentzian symmetric spaces are studied in detail in Lorentzian geometry and theoretical physics. These spaces are classified by Cahen and Wallach, and their properties are well studied in dimension 4 due to their various applications in physics. Killing vector fields and Ricci solitons on generalized Cahen — Wallach spaces were studied by D.N. Oskorbin, E.D. Rodionov and others. Killing vector fields allow finding a general solution to the Ricci soliton equation corresponding to the Einstein constant for the cases when the Einstein constant maintains its constancy. However, conformally Killing vector fields play the role of the Killing fields when the Einstein constant varies. It is known that the conformal factor in the conformal analogue of the Killing equation is constant for a nonzero Weyl tensor. In this paper, the conformal analogue of the Killing equation on Cahen — Wallach manifolds with a zero Weyl tensor is studied, and a general form of the conformal factor of this equation is obtained.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Dmitry N. Oskorbin, Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Higher Mathematics

Eugene D. Rodionov, Moscow Institute of Physics and Technology, Dolgoprudny, Russia

Doctor of Sciences in Physics and Mathematics, Professor of the Department of Mathematical Analysis

References

Cahen M., Wallach N. Lorentzian Symmetric Spaces // Bulletin of the American Mathematical Society. 1970. Т. 76 (3). Р. 585-591.

Cahen M., Kerbra, Y. champs de Veteurs conformes et Transformations conformes des Espaces Lorentziens Sy-metriques // Journal de Mathematiques Pures et Appliquees. 1978. Т 57 (2). Р. 99-132.

Cahen M., Kerbrat Y. Transformations conformes des Espaces Symetriques Pseudoriemanniens // Annali di Ma-tematica Pura ed Applicata. 1982. Т. 132. Р. 275-289.

Alekseevski D. Self-similar Lorentzian Manifolds // Annals of Global Analysis and Geometry. 1985. Т. 3 (1). Р. 59-84. DOI: 10.1007/BF00054491

Frances c. About Pseudo-Riemannian Lichnero-wicz conjecture // Transformation Groups. 2015. Т. 20 (4). Р. 1015-1022. DOI: 10.1007/s00031-015-9317-x

Kath I., Olbrich M. compact Quotients of cahen — Wallach Spaces // Memoirs of the American Mathematical Society. 2019. Т 262. № 1264. Р. 84. DOI: 10.1090/memo/1264 7. Kuhnel W., Rademacher H. Essential conformal Fields in Pseudo-Riemannian Geometry // Journal de Mathematiques Pures et Appliquees. 1995. Т. 74 (5). Р. 453-481.

Podoksenov M. A Lorentzian Manifold With a One-parameter Group of Homotheties that Has a closed Isotropic Orbit // Siberian Mathematical Journal. 1989. Т. 30 (5). Р. 135-137.

Podoksenov M. conformally Homogeneous Lorentzian Manifolds // Siberian Mathematical Journal. 1992. Т. 33 (6). Р. 154-161.

Андреева Т.А., Оскорбин Д.Н., Родионов Е.Д. Исследование конформно киллинговых векторных полей на пятимерных 2-симметрических лоренцевых многообразиях // Вестник Югорского государственного университета. 2021. Т. 1 (60). С. 17-22.

Blau M., O’Loughlin M. Homogeneous Plane Waves // Nuclear Physics. 2003. Vol. 654 (1-2). P. 135-176.

Published
2024-10-07
How to Cite
Oskorbin D. N., Rodionov E. D. On the Conformal Factor in the Conformal Analogue of the Killing Equation on Cahen — Wallach Manifolds with Zero Weyl Tensor // Izvestiya of Altai State University, 2024, № 4(138). P. 75-79 DOI: 10.14258/izvasu(2024)4-10. URL: http://izvestiya.asu.ru/article/view/%282024%294-10.