On the Implementation of the Algorithm for Calculating the Functionals of Minkowski Three-Dimensional Digital Space

УДК 519.67

  • M.E. Gnedko Altai State University (Barnaul, Russia) Email: gnedko98@mail.ru
  • D.N. Oskorbin Altai State University (Barnaul, Russia) Email: oskorbin@yandex.ru
Keywords: voxel, digital space, connection type, neighborhood type, Euler characteristic, local coefficients, Minkowski functional

Abstract

The paper is devoted to the implementation of an algorithm for calculating the functionals of the Minkowski set in a three-dimensional digital space. The algorithm is based on the calculation of the values of these functionals for various types of node neighborhoods into which a set in a digital space can be divided. The concept of Minkowski functionals appeared in the theory of convex sets in n-dimensional Euclidean space; they are coefficients in the expansion of the volume function ε of a neighborhood of a convex set in powers of ε. Subsequently, it turned out that the concept of functionals can be generalized to the case of sets with singularities, including the case of a set in a digital space. Minkowski functionals of a digital image representing a union cubic voxel intersecting along edges and vertices are statistical measures based on the Euler-Poincare characteristic of n-dimen-sional space, show sensitivity to the morphology of disordered structures, which is confirmed by applied research. They are used in calculating density measures for a number of unordered microstructural models; particle-based models, amorphous microstructures, cellular and foamlike structures. The results of calculations for various microstructures demonstrate a number of qualitative characteristics.

The paper studies the implementation of the algorithm for finding the Minkowski functionals for a set in a threedimensional digital space.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

M.E. Gnedko, Altai State University (Barnaul, Russia)

магистрант Института математики и информационных технологий

D.N. Oskorbin, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры математического анализа

References

Edelsdrunner H. A Short Course in Computational Geometry and Topology. // Heidelberg: Springer, 2014.

Edelsdrunner H.,Harer J. Computational Topology. An Introduction // Amer. Math. Soc. Providence, Rhode Island, 2010.

Fredrich J., Greaves K., Martin J. Int. J. Rock Mech. Min. // Sci. Geomech. Abstr. 1993.

Scheidegger A. The Physics of Flow through Porous Media // University of Toronto Press, Toronto, 1974.

Kong T.Y. Digital Topology: Introduction and Survey // Computer Vision, Graphics and Image Processing. 1989. Vol. 48.

Arns C.H.,Knackstedt M.A.,Mecke K.R. Characterisation of irregular spatial structures by parallel sets and integral geometricmeasures // Colloids and Surfaces A. 2015.T. 24.

Arns C.H.,Knackstedt M.A., Pinczewski W.V. ,Mecke K.R. Euler - Poincare characteristics of classes of disordered media // Cambridge University Press.2004.

Базайкин Я.В. Лекции по вычислительной топологии: учебно-метод. пособие. Новосибирск, 2017.

Богоявленская О.А. О вычислении функционалов Минковского четырехмерных цифровых изображений // Научно-исследовательский вычислительный центр МГУ им. М.В. Ломоносова, 2020.

Чашкин А.В. Дискретная математика : учебник для учреждений высш. проф. образования. М., 2012.

Бондарь А.В., Гнедко М.Е., Оскорбин Д.Н. О задаче вычисления функционалов Минковского цифровых пространств малых размерностей // Труды семинара по геометриии математическому моделированию. 2022. № 7.

Published
2022-09-09
How to Cite
Gnedko M., Oskorbin D. On the Implementation of the Algorithm for Calculating the Functionals of Minkowski Three-Dimensional Digital Space // Izvestiya of Altai State University, 2022, № 4(126). P. 99-103 DOI: 10.14258/izvasu(2022)4-15. URL: http://izvestiya.asu.ru/article/view/%282022%294-15.
Section
Математика и механика