Electronic, Vibrational and Thermal Properties of α and β Titanium
УДК 546.82
Abstract
Titanium and titanium-based alloys are widely used for various technological applications in the aerospace, automotive, and shipbuilding industries because of their good strength-to-weight ratio and good combination of mechanical properties. To understand the fundamental properties of titanium, as well as phase transformations, it is necessary to study the electronic and phonon structure of its main phases. Although such studies have been intensively carried out since the middle of the last century, theoretical studies of the phonon system and properties based on it remain rare. The atomic and electronic structures of α and β titanium are calculated by the projector augmented-wave method within the electron density functional theory. The analysis of the electron energy spectrum and the densities of electronic states is carried out. Using the harmonic approximation and the finite displacement method, the phonon spectrum and a number of related thermodynamic characteristics are calculated. The features of the phonon subsystem of β-Ti, which indicate its dynamic instability, are discussed. The calculation of the vibrational entropy and enthalpy, as well as the lattice heat capacity, showed satisfactory agreement with the experiment. In general, the approach used can be applied to analyze the forming phases of doped titanium.
Downloads
Metrics
References
Leyens C., Peters M. Titanium and titanium alloys. Fundamentals and applications. Weinheim, 2003.
Whittaker M., Titanium in the gas turbine engine. In E. Benini, Ed. Advances in Gas Turbine Technology. London, 2011. DOI: 10.5772/21524.
Хорев А.И. Комплексное легирование и термомеханическая обработка титановых сплавов. М., 1979.
Balazic M., Kopac J., Jackson M.J., Ahmed A. Review: titanium and titanium alloy applications in medicine // Int. J. Nano Biomat. 2007. Vol. 1. № 1. DOI: 10.1504/IJN-BM.2007.016517.
Ishfaq K., Rehman M., Khan A.R., Wang Y. A review on the performance characteristics, applications, challenges and possible solutions in electron beam melted Ti-based orthopaedic and orthodontic implants // Rapid Prototyping J. 2021. Vol. 28. № 3. DOI: 10.1108/RPJ-03-2021-0060.
Fisher E.S., Renken C.J. Single-crystal elastic moduli and the hcp bcc transformation in Ti, Zr, and Hf // Phys. Rev. 1964. Vol. 135. № 2A. DOI: 10.1103/physrev.135.a482.
Ando T., Nakashima K., Tsuchiyama T., Takaki S. Microstructure and mechanical properties of a high nitrogen titanium alloy // Mater. Sci. Eng. A. 2008. Vol. 486. № 1-2. DOI: 10.1016/j.msea.2007.08.074.
Kim H.Y., Miyazaki S. Martensitic transformation and superelastic properties of Ti-Nb base alloys // Mater. Trans. 2015. Vol. 56. № 5. DOI: 10.2320/matertrans.M2014454.
Dong R., Kou H., Wu L., Yang L., Zhao Y., Hou H. в to ш transformation strain associated with the precipitation of а phase in a metastable в titanium alloy // J. Mater. Sci. 2021. Vol. 56. DOI: 10.1007/s10853-020-05231-z.
Mattheiss L.F. Energy bands for the iron transition series // Phys. Rev. 1964. Vol. 134. № 4A. DOI: 10.1103/Phys-Rev.134.A970.
Hygh E.H., Welch R.M. Electronic structure of titanium // Phys. Rev. 1970. Vol. 1. № 6. DOI: 10.1103/PhysRevB.1.2424.
Jafari M., Hajiyani H. Optical properties of а, в and ш structure of titanium: Ab initio approach // Com-put. Mater. Sci. 2011. Vol. 50. № 9. DOI: 10.1016/j.com-matsci.2011.03.018.
Hu C.E., Zeng Z.Y., Zhang L., Chen X.R., Cai L.C., Alfe D. Theoretical investigation of the high pressure structure, lattice dynamics, phase transition, and thermal equation of state of titanium metal // J. Appl. Phys. 2010. Vol. 107. № 093509. DOI: 10.1063/1.3407560.
Sangiovanni D.G., Klarbring J. Smirnova D., Skrip-nyak N.V., Gambino D., Mrovec M., Simak S.I., Abrikosov I.A. Superioniclike diffusion in an elemental crystal: bcc titanium // Phys. Rev. Lett. 2019. Vol. 123. № 105501. DOI: 10.1103/ PhysRevLett.123.105501.
Blochl P.E. Projector augmented-wave method // Phys. Rev. B. 1994. Vol. 50. № 17953. DOI: 10.1103/ PhysRevB.50.17953.
Kresse G., Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method // Phys. Rev. B. 1999. Vol. 59. № 1758. DOI: 10.1103/PhysRevB.59.1758.
Perdew J.P., Burke K., Ernzerhof M. Generalized gradient approximation made simple // Phys. Rev. Lett. 1996. Vol. 77. № 3865. DOI: 10.1103/PhysRevLett.77.3865.
Gandi A.N., Zhu J. Reconstructive phase transformations in body-centered cubic titanium // Phys. Status Solidi. 2020. Vol. 257. № 2000193. DOI: 10.1002/pssb.202000193.
Wood R.M. The lattice constants of high purity alpha titanium // Proc. Phys. Soc. 1962. Vol. 80.
Senkov O.N., Chakoumakos B.C., Jonas J.J., Froes F.H. Effect of temperature and hydrogen concentration on the lattice parameter of beta titanium // Mater. Res. Bull. 2001. Vol. 36. DOI: 10.1016/S0025-5408(01)00604-3.
Togo A., Tanaka I. First principles phonon calculations in materials science // Scr. Mater. 2015. Vol. 108. DOI: 10.1016/j.scriptamat.2015.07.021.
Lekka Ch.E., Gutierrez-Moreno J.J., Calin M. Electronic origin and structural instabilities of Ti-based alloys suitable for orthopaedic implants // J. Phys. Chem. Solids. 2017. Vol. 102. DOI: 10.1016/j.jpcs.2016.10.013.
Киттель Ч. Введение в физику твердого тела. М., 1978.
Kulkova S.E., Egorushkin V.E., Kalchikhin V.V. The electron structure of NiTi martensite // Solid State Com-mun. 1991. Vol. 77. № 9. DOI: 10.1016/0038-1098(91)90766-O.
Stassis C., Arch D., Harmon B.N. Lattice dynamics of hcp Ti // Phys. Rev. 1979. Vol. 19. № 1. DOI: 10.1103/ PhysRevB.19.181.
Petry W., Heiming A., Trampenau J., Alba M., Herzig C., Schober H.R., Vogl G. Phonon dispersion of the bcc phase of group-IV metals. I. bcc titanium // Phys. Rev. 1991. Vol. 43. № 13. DOI: 10.1103/PhysRevB.43.10933.
Petry W, Heiming A., Trampenau J., Alba M., Vogl G. Strong phonon softening in the bcc phase of titanium // Physica B. 1989. Vol. 156-157. DOI: 10.1016/0921-4526(89)90585-1.
Barin I. Thermochemical data of pure substances, 3rd Ed., Weinheim, 1995.
Copyright (c) 2022 Сергей Олегович Каспарян , Александр Викторович Бакулин , Светлана Евгеньевна Кулькова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).