Database Reconciliation in Applied Interval Analysis
УДК 531.761
Abstract
The article deals with the problem of the reconciliation of observation results, which arises when solving problems of interval analysis of a database. It is found that the values of the set of input variables and the output variable are consistent if the graph of the desired dependence is located at the inner points of the interval hyper-rectangle in each observation. In this case, it is proposed to use special solutions of interval systems of linear algebraic equations (ISLAU) to analyze the data of linear processes. However, in real and model conditions, the specified property of the database is not always fulfilled a priori. In these cases, it is proposed to use the principle of robust estimation: inconsistent observations should either be excluded from the sample or adjusted. This paper presents the results of the study of these methods of matching the used experimental database on model linear processes under conditions when the basic assumptions of interval estimation of dependencies are fulfilled. In addition, variant computational experiments have been investigated to reveal the possibility of increasing the accuracy of interval analysis due to preliminary correction of observations, including the possibility of guaranteed estimation of the sought dependences.
Downloads
Metrics
References
Мадияров М.Н., Оскорбин Н.М., Суханов С.И. Примеры интервального анализа данных в задачах моделирования процессов // Известия Алт. гос. ун-та. 2018. № 1 (99). DOI: 10.14258/izvasu(2018)1-20.
Канторович Л.В. О некоторых новых подходах к вычислительным методам и обработке наблюдений // Сибирский математический журнал. 1962. Т. 3. № 5.
Шарый С.П. Конечномерный интервальный анализ. Новосибирск, 2017.
Жолен Л. Прикладной интервальный анализ. М. : Ижевск, 2005.
Gutowski M.W. Interval experimental data fitting. In: Liu, J.P. (ed.): Focus on 6. Numerical Analysis. Nova Science, New York, NY, USA (2006). https://doi. org/10.13140/2.1.5156.3520.
Zhilin S.I. Simple method for outlier detection in fitting experimental data under interval error // Chemometrics and Intellectual Laboratory Systems. 2007. Vol. 88. № 1.
Шелудько А.С. Гарантированное оценивание параметров дискретных моделей хаотических процессов // Вестник ЮУрГУ Серия: Вычислительная математика и информатика. 2018. Т. 7. № 1. DOI: 10.14529/cmse180103.
Шарый С.П. Сильная согласованность в задаче восстановления зависимостей при интервальной неопределенности данных // Вычислительные технологии. 2017. Т. 22. № 2.
Shary S.P. Maximum consistency method for data fitting under interval uncertainty. Journal of Global Optimization, 2016. № 66 (1). https://doi.org/10.1007/s10898-015-0340-1.
Shary S.P. Weak and strong compatibility in data fitting problems under interval uncertainty. Advances in Data Science and Adaptive Analysis. 2020. № 12 (1). https://doi.org/10.1142/ S2424922X20500023.
Хьюбер П. Робастность в статистике. М., 1984.
Miller B.M., Kolosov K.S. Robust Estimation Based on the Least Absolute Deviations Method and the Kalman Filter // Automation and Remote Control. 2020. Vol. 81. № 11. DOI: 10.1134/S0005117920110041.
Максимов А.В., Оскорбин Н.М. Многопользовательские информационные системы: основы теории и методы исследования ; 2-е изд. испр. и доп. Барнаул, 2013.
Оскорбин Н.М. Вычислительные технологии анализа больших данных методами линейного программирования // Высокопроизводительные вычислительные системы и технологии. 2021. Т. 5. № 1.
Copyright (c) 2022 Ерлан Канапиянович Ергалиев, Мураткан Набенович Мадияров, Николай Михайлович Оскорбин, Лариса Ленгардовна Смолякова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).