On Some Remarkable Points and Line Segments in Triangles

УДК 514.112.3

  • Yu.N. Maltsev Altai State Pedagogical University (Barnaul, Russia) Email: maltsevyn@gmail.com
  • A.S. Monastyreva Altai State University (Barnaul, Russia) Email: akuzmina1@yandex.ru
Keywords: triangle, circumradius, inradius, semiperimeter, remarkable point

Abstract

Let ra, rb, rc be the radii, and OA, OB, OC the centers of tangent circles at the vertices to the circumcircle of a triangle ABC and to the opposite sides. In the paper [Andrica D., Marinescu D.S. New interpolation inequalities to Euler's R≥2 // Forum Geometricorum. 2017. Vol. 17], the authors proved that 4/R £ 1/ra + 1/rb +1/rc £2/r. In the paper [Isaev I., Maltsev Yu., Monastyreva A. On some relations in geometry of a triangle // Journal of Classical Geometry. 2018. Vol. 4], it is given the following generalization of these inequalities: 1/ra + 1/rb +1/rc=2/R+1/r. In that paper, we find the area of the triangle OAOBOC (see Theorem 1). We prove some relations for the numbers R-ra, R-rb, R-rc, where R is the circumradius of a triangle ABC. Namely, we find the expressions 1/R-ra+1/R-rb + 1/R-rc  и a/R-ra+b/R-rb + c/R-rc by means by the parameters p, R and r (see Theorem 2). We estimate these values (see Theorem 3). Finally, using the results of paper [Maltsev Yu., Monastyreva A. On some relations for a triangle // International Journal of Geometry. 2019. Vol. 8 (1)] and representing the expression of (1-cos(αβ))(1-cos(β-γ))(1-cos(α-γ)) by means of p, R, r, we prove new proof of the fundamental triangle inequality (see Corollary 2).

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yu.N. Maltsev, Altai State Pedagogical University (Barnaul, Russia)

доктор физико-математических наук, профессор кафедры математики и методики обучения математике

A.S. Monastyreva, Altai State University (Barnaul, Russia)

доцент кафедры алгебры и математической логики

References

Andrica D., Marinescu D.S. New interpolation inequalities to Euler’s R  2r // Forum Geometricorum. 2017. Vol. 17.

Isaev I., Maltsev Yu., Monastyreva A. On some relations in geometry of a triangle // Journal of Classical Geometry. 2018. Vol. 4.

Maltsev Yu., Monastyreva A. On some relations for a triangle // International Journal of Geometry. 2019. Vol. 8(1).

Soltan V., Maidman S. Identities and inequalities in a triangle. Kishinev, 1982 (in Russian).

Wu S. A sharpened version of the fundamental triangle inequality // Mathematical Inequalities and Applications. 2008. Vol. 11(3).

Andrica D., Barbu C., Piscoran L. The geometric proof to a sharp version of Blundon’s inequalities // Journal of Mathematical Inequalities. 2017. Vol. 17(4).

Bottema O., Djordjevic R., Janic R., Mitrinovic D., Vasic P. Geometric Inequalities. Groningan, 1969.

Mitrinovic D. Recent Advances in Geometric Inequalities. Netherlands, Dordrecht, 1989.

Blundon W. On certain polynomial associated with a triangle // Math. Mag. 1963. Vol. 36.

Blundon W. Inequalities associated with a triangle // Canadian Math.Bull. 1965. Vol. 8.

Published
2021-03-17
How to Cite
Maltsev Y., Monastyreva A. On Some Remarkable Points and Line Segments in Triangles // Izvestiya of Altai State University, 2021, № 1(117). P. 106-111 DOI: 10.14258/izvasu(2021)1-18. URL: http://izvestiya.asu.ru/article/view/%282021%291-18.
Section
Математика и механика