Physical Nature of Strengthening Mechanisms During Extremely Long-Term Operation of Rails

УДК 531

  • Yu.F. Ivanov Institute of High-Current Electronics SB RAS (Tomsk, Russia) Email: yufi55@mail.ru
  • A.A. Yuriev JSC "Evraz-West-Siberian Metallurgical Works" (Novokuznetsk, Russia) Email: Ant-yurev@yandex.ru
  • V.E. Kormyshev Siberian State Industrial University (Novokuznetsk, Russia) Email: 89239230000@mail.ru
  • X. Chen Wenzhou University (Wenzhou, China) Email: chenxizhang@wzu.edu.cn
  • V.B. Kosterev Siberian State Industrial University (Novokuznetsk, Russia) Email: kosterev@sibsiu.ru
  • V.E. Gromov Siberian State Industrial University (Novokuznetsk, Russia) Email: gromov@physics.sibsiu.ru
Keywords: strengthening mechanisms, structure, surface layers, rail head, long-term operation

Abstract

The quantitative estimation of strengthening mechanisms of rails’ surface layer is carried out on the basis of regularities and formation mechanisms of structure-phase states revealed by the methods of modern physical materials science. It is performed at different depths of the rail head along the central axis and fillet of differentially quenched 100-meter rails after the extremely long-term operation (gross passed tonnage of 1411 mln tons). A long-term operation of rails is accompanied by the formation of structural constituent gradient consisting of a regular change in the relative content of lamellar pearlite, fractured pearlite, the structure of ferrite-carbide mixture, scalar, and excess dislocation density along the cross-section of the rail head. As the distance to the rail fillet surface decreases, the relative content of metal volume with lamellar pearlite decreases. However, the relative content of metal volume with the presence of the fractured pearlite structure and ferrite-carbide mixture increases. The contributions caused by the matrix lattice friction, intraphase boundaries, dislocation substructure, presence of carbide particles, internal stress fields, solid-solution strengthening, pearlite component of steel structure are estimated. It is shown that the main mechanism of strengthening in the surface layer is due to the interaction of moving dislocations with low-angle boundaries of nanometer dimensional fragments and subgrains. The main dislocation strengthening mechanism in a near-surface layer at a depth of 2-10 mm is due to the interaction of moving dislocations with immobile ones.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Yu.F. Ivanov, Institute of High-Current Electronics SB RAS (Tomsk, Russia)

доктор физико-математических наук, профессор, главный научный сотрудник

A.A. Yuriev, JSC "Evraz-West-Siberian Metallurgical Works" (Novokuznetsk, Russia)

кандидат технических наук, менеджер по управлению продуктами и ресурсами

V.E. Kormyshev, Siberian State Industrial University (Novokuznetsk, Russia)

кандидат технических наук, старший научный сотрудник кафедры естественно-научных дисциплин

X. Chen, Wenzhou University (Wenzhou, China)

PhD, профессор факультета машиностроения и электротехники

V.B. Kosterev, Siberian State Industrial University (Novokuznetsk, Russia)

кандидат технических наук, помощник ректора

V.E. Gromov, Siberian State Industrial University (Novokuznetsk, Russia)

доктор физико-математических наук, профессор, заведующий кафедрой естественно-научных дисциплин

References

Gromov V.E., Peregudov O.A., Ivanov Yu.F., Konovalov S.V, Yuriev A.A. Evolution of structural-phase states of rail metal in long-term operation. Novosibirsk, 2017.

Gromov V.E., Ivanov Yu.F., Yuriev A.B., Morozov K.V Microstructure of quenched rails. Cambridge, 2016.

Ivanisenko Yu., Fecht H.J. Microstructure modification in the surface layers of railway rails and wheels // Steel tech. 2008. Vol. 3. № 1.

Ivanisenko Yu., Maclaren I., Souvage X., Valiev R.Z., Fecht H.J. Shear-induced α → γ transformation in nanoscale Fe-C composite // Acta Mater. 2006. Vol. 54. № 6. URL: https://doi.org/10.1016/j.actamat.2005.11.034.

Seo J.-W, Jun H.-K., Kwon S.-J., Lee D.-H. Rolling contact fatigue and wear of two different rail steels under rolling-sliding contact // International Journal of Fatigue. 2016. Vol. 83. URL: https://doi.org/10.1016/j.ijfatigue2015.10.012.

Lewis R., Christoforou P, Wang W.J., Beagles A., Burstow M., Lewis S.R. Investigation ofthe influence of rail hardness on the wear of rail and wheel materials under dry conditions (ICRI wear mapping project) // Wear. 2019. Vol. 430-431. URL: https://doi.org/10.1016/j.wear.2019.05.030.

Skrypnyk R., Ekh M., Nielsen J.C.O., Palsson B.A. Prediction of plastic deformation and wear in railway crossings — Comparing the performance of two rail steel grades // Wear. 2019. Vol. 428-429. URL: https://doi.org/10.1016/j.wear.2019.03.019.

Kim D., Quagliato L., Park D., Kim N. Lifetime prediction of linear slide rails based on surface abrasion and rolling contact fatigue-induced damage // Wear. 2019. Vol. 420-421. URL: https://doi.org/10.1016/j.wear.2018.10.015.

Huang Y.B., Shi L.B., Zhao X.J., Cai Z.B., Liu Q.Y., Wang W.J. On the formation and damage mechanism of rolling contact fatigue surface cracks of wheel/rail under the dry condition // Wear. 2018. Vol. 400-401. URL: https://doi.org/10.1016/j.wear.2017.12.020.

Ivanov Yu.F., Gromov V.E., Yuriev A.A., Glezer A.M., Popova N.A., Peregudov O.A., Konovalov S.V. Contribution of different mechanisms to differentially tampered rail strengthening during long operation // Deformation and failure of metals. 2018. № 4.

Gromov V.E., Ivanov Yu.F., Morozov K.V., Peregudov O.A., Popova N.A., Nikonenko E.L. Rail strengthening mechanisms in long-term operation // Problems of ferrous metallurgy and materials science. 2015. № 4.

Egerton F.R. Physical Principles of Electron Microscopy. Basel, 2016.

Kumar C.S.S.R. Transmission Electron Microscopy. Characterization of Nanomaterials. New York, 2014.

Carter C.B., Williams D.B. Transmission Electron Microscopy. Berlin, 2016.

Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Glezer A.M., Yuriev A.A., Semin A.P, Sundeev R.V. Structural phase states and properties of rails after long-term operation // Materials Letters. 2020. Vol. 268. URL: https://doi.org/10.1016/j.matlet.2020.127499.

Kormyshev V.E., Ivanov Yu.F., Gromov V.E., Yuryev A.A., Polevoy E.V. Structure and properties of differentiatedly quenched 100-meter rails after extremely long operation // Fundamental problems of modern materials science. 2019. Vol. 16. № 4. DOI: 10.25712/ASTU.1811-1416.2019.04.016.

Kormyshev V.E., Polevoy E.V., Yuryev A.A., Gromov V.E., Ivanov Yu.F. Structure formation of differentiatedly quenched 100-meter rails in long-term operation // Izvestiya. Ferrous Metallurgy. 2020. Vol. 63. № 2. DOI: 10.17073/0368-07972020-2-108-115.

Kormyshev V.E., Ivanov Yu.F., Yuriev A.A., Polevoy E.V., Gromov V.E., Glezer A.M. Evolution of structural-phase states and properties of differentiatedly quenched 100-meter rails in extremely long-term operation. Information 1. Structure and properties of rail steel before operation // Problems of ferrous metallurgy and materials science. 2019. № 4.

Kormyshev V.E., Gromov V.E., Ivanov Yu.F., Glezer A.M. Structure of differentiatedly quenched rails under severe plastic // Deformation and failure of materials. 2020. № 8. DOI: 10.31044/1814-4632-2020-8-16-20.

Hirsch P., Hovy A., Nickolson R., Pashley D., Whelan M. Electron microscopy of fine crystals. M., 1968.

Koneva N.A., Kozlov E.V. Nature of substructural strengthening // Proceedings of Higher Schools. Physics. 1982. № 8.

Kozlov E.V., Starenchenko V.A., Koneva N.A. Evolution of dislocation substructure and thermodynamics of plastic deformation of metallic materials // Metals. 1993. Vol. 5.

Yao M.J., Welsch E., Ponge D., Haghighat S.M.H., Sandlobes S., Choi P., et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel // Acta Materia. 2017. Vol. 140. URL: https://doi.org/10.1016/j.actamat.2017.08.049.

Friedman L.H., Chrzan D.C. Scaling Theory of the Hall-Petch Relation for Multilayers // Phys. Rev. Lett. 1998. Vol. 81.

Han Y., Shi J., Xu L., Cao W.Q., Dong H. TiC precipitation induced effect on microstructure and mechanical properties in low carbon medium manganese steel // Mater. Sci. Eng. A. 2011. Vol. 530.

Zurob H.S., Hutchinson C.R., Brechet Y., Purdy G. Modeling recrystallization of microalloyed austenite: effect of coupling recovery, precipitation and recrystallization // Acta Mater. 2002. Vol. 50. URL: https://doi.org/10.1016/S1359-6454(02)00097-6.

Huthcinson B., Hagstrom J., Karlsson O., Lindell D., Tornberg M., Lindberg F., et al. Microstructures and hardness of as-quenched martensites (0.1-0.5%C) // Acta Mater. 2011. Vol. 59. URL: https://doi.org/10.1016/j.actamat.2011.05.061.

Kim J.G., Enikeev N.A., Seol J.B., Abramova M.M., Karavaeva M.V., Valiev R.Z., et al. Superior Strength and Multiple Strengthening Mechanisms in Nanocrystalline TWIP Steel // Scientific Reports. 2018. Vol. 8.

Sevillano J.G. An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel // Scr. Mater. 2009. Vol. 60. URL: https://doi.org/10.1016/j.scriptamat.2008.10.035.

Bouaziz O., Allain S., Scott S. Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels //Scr. Mater. 2008. Vol. 58. URL: https://doi.org/10.1016/j.scriptamat.2007.10.050.

Ganji R.S., Karthik P.S., Rao K.B.S., Rajulapati K.V. Strengthening mechanisms in equiatomic ultrafine grained AlCoCrCuFeNi high-entropy alloy studied by micro- and nanoindentation methods // Acta Mater. 2017. Vol. 125. URL: https://doi.org/10.1016/j.actamat.2016.11.046.

Silva R.A., Pinto A.L., Kuznetsov A., Bott I.S. Precipitation and Grain Size Effects on the Tensile Strain-Hardening Exponents of an API X80 Steel Pipe after High-Frequency Hot-Induction Bending // Metals. 2018. Vol. 8.

Hosford W.F. Mechanical Behavior of Materials, 2nd ed. Cambridge, 2010.

Morales E.V, Gallego J., Kestenbachz H.-J. On coherent carbonitride precipitation in commercial microalloyed steels // Philos. Mag. Lett. 2003. Vol. 83.

Morales E.V, Galeano Alvarez N.J., Morales A.M., Bott I.S. Precipitation kinetics and their effects on age hardening in an Fe-Mn-Si-Ti martensitic alloy // Mater. Sci. Eng. A. 2012. Vol. 534. URL: https://doi.org/10.1016/j.msea.2011.11.056.

Sieurin H., Zander J., Sandstrom R. Modelling solid solution hardening in stainless steels // Mater. Sci. Eng. A. 2006. Vol. 415. URL: https://doi.org/10.1016/j.msea.2005.09.031.

Fine M.E., Isheim D. Origin of copper precipitation strengthening in steel revisited // ScriptaMaterialia. 2005. Vol. 53. URL: https://doi.org/10.1016/j.scriptamat.2005.02.034.

Goldstein M.I., Farber B.M. Dispersion hardening of steel. M., 1979.

Pickering F.B. Physical metal science and treatment of steels. M., 1982.

Predvoditelev A.A. Modern state of investigation into dislocation ensembles. In book: Problems of modern crystallography. M., 1975.

Mc. Li D. Mechanical properties of metals. M., 1965.

Embyri I.D. Strengthening Method in Crystals. Applied Science Publishes, 1971.

Koneva N.A., Kozlov E.V. Structural levels of plastic deformation and failure. Novosibirsk, 1990. Chapter. Physical nature of stage development of plastic deformation.

Schtremel M.A. Strength of alloys. Part II. Deformation. Text-book for Higher Schools. M., 1997.

Mott N.F., Nabarro F.R.N. The distribution of dislocations in slip band // Proc. Phys. Soc. 1940. Vol. 52. № 1.

Belen’kiy B.Z., Farber B.M., Goldschtein M.I. Estimations of strength of low-carbon low-alloy steels according to structural data // Physics of metals and material science. 1975. Vol. 39. № 3.

Ridley T., Stuart H., Zwell L. Lattice parameters of Fe-C austenite of room temperature // Trans. Met. Soc. AIME. 1969. Vol. 246. № 8.

Vohringer O., Macherauch E. Structure and Mechanischeeigenchaft von martensite // H.T.M. 1977. Vol. 32. № 4.

Prnka T. Quantitative relations between parameters of dispersed precipitations and mechanical properties of steels // Metal science and thermal treatment of steel. 1979. № 7.

Published
2021-03-17
How to Cite
Ivanov Y., Yuriev A., Kormyshev V., Chen X., Kosterev V., Gromov V. Physical Nature of Strengthening Mechanisms During Extremely Long-Term Operation of Rails // Izvestiya of Altai State University, 2021, № 1(117). P. 33-39 DOI: 10.14258/izvasu(2021)1-05. URL: http://izvestiya.asu.ru/article/view/%282021%291-05.

Most read articles by the same author(s)