On Estimation of Parameters of a Three-Dimensional Uniform Regression Model

УДК 519.87

  • I.V. Ponomarev Altai State University (Barnaul, Russia) Email: igorpon@mail.ru
Keywords: uniform regression model, quality functional, convex hull, computational complexity

Abstract

Typically, a researcher faces computational difficulties in assessing the parameters of a certain model when modeling the relationship between different indicators of analysis. A suitable model is generally obtained by a sequential refinement of the features included in its composition and, therefore, by performing multiple repetitions of computational algorithms. At the same time, the computational complexity of these algorithms begins to play a significant role in modeling. A certain set of indicators is used to reduce the number of iterations. These indicators are responsible for the quality of the constructed model and capable of “signaling" about the need to adjust the model. The model parameters and the quality functional value are such indicators in regression modeling. They are able to answer the question of the appropriateness of building a particular model and are indicators of the quality of the resulting functional dependence.

In this paper, we study methods and algorithms for constructing and evaluating the main indicators of L-regression — a quality indicator and model parameters. The first part of the paper describes the most efficient computational procedures for determining parameters in the case of a three-dimensional uniform regression model, indicates the complexity of these algorithms, and gives a geometric interpretation. In the second part of the paper, a series of theorems on estimating the values of the parameters of threedimensional L-regression is presented, and a formula for calculation of an indicator of sample uniformity is provided.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biography

I.V. Ponomarev, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры математического анализа

References

Ponomarev I.V., Slavsky V.V. Uniformly fuzzy model of linear regression // Journal of Mathematical Sciences. 2012. Vol. 186, Issue 3. DOI: 10.1007/s10958-012-1002-1.

Карманов В.Г. Математическое программирование. 3-е изд. М., 1986.

Сантало Луи А. Интегральная геометрия и геометрические вероятности. пер. с англ. / под ред. Р.В. Амбарцумяна. М., 1983.

Половинкин Е.С., Балашов М.В. Элементы выпуклого и сильно выпуклого анализа. М., 2004.

Barber C.B., Dobkin D.P., Huhdanpa H.T. The Quickhull Algorithm for Convex Hulls // ACM Transactions on Mathematical Software. 1996. Vol. 22, № 4.

David M. Mount. Computational Geometry. University of Maryland, 2002.

Махаева Т.П., Пономарев И.В. Об оценке степени однородности выборки в равномерно-регрессионной модели // Известия Алт. гос. ун-та. 2020. № 1(111). DOI: 10.14258/izvasu(2020)1-19.

Брюс П., Брюс Э. Практическая статистика для специалистов Data Science : пер. с англ. СПб., 2018.

Кобзарь А.И. Прикладная математическая статистика. М., 2006.

Минк Х. Перманенты. М., 1982.

Published
2020-09-09
How to Cite
Ponomarev I. On Estimation of Parameters of a Three-Dimensional Uniform Regression Model // Izvestiya of Altai State University, 2020, № 4(114). P. 108-111 DOI: 10.14258/izvasu(2020)4-17. URL: http://izvestiya.asu.ru/article/view/%282020%294-17.
Section
Математика и механика