On the Assessment of Homogeneity in a Uniform Regression Model
УДК 519.65
Abstract
When conducting an exploratory analysis of the data and the subsequent construction of functional dependencies between the observed phenomena, it is often necessary to assess the degree of dependence between the studied data. The basis for obtaining such criteria with a probabilistic approach usually includes the correlation component of the sample. The choice of the used indicator directly depends on the methods of studying the sample, as well as the tools for constructing the model. In most cases, at the initial stage of modeling, it is precisely the homogeneity estimates of the sample that are studied, a good selection of which can reduce the complexity of constructing the relationship between the data.In this paper, we study a method for assessing the uniformity of sample data when constructing a uniform regression model. The first part of the paper describes the correlation coefficient for the L∞ regression, studies the interval of its change, describes the geometric interpretation and the algorithm for constructing this indicator. In the second part of the paper, we study the method of constructing an indicator of "concentration" of the sample. For this, formulas are derived that relate the correlation coefficient to the magnitude of the original sample. In conclusion, a description is given of the algorithms for constructing the considered indicators, and conclusions are drawn about the complexity of these algorithms.
Downloads
Metrics
References
Ponomarev I.V., Slavsky V.V. Uniformly fuzzy model of linear regression // Journal of Mathematical Sciences. 2012. Vol. 186, Issue 3.
Сантало Луи А. Интегральная геометрия и геометрические вероятности : пер. с англ. / под ред. Р.В. Амбарцумяна. М., 1983.
Дрейпер Н, Смит Г. Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis : 3-е изд. М., 2007.
Берже М. Геометрия. М., 1984. Т. 1.
Кендалл М., Стюарт А. Статистические выводы и связи. М., 1973. Т. 2.
Берг М., Чеонг О., Кревельд М., Овермарс М. Вычислительная геометрия. Алгоритмы и приложения = Computational Geometry: Algorithms and Applications. М., 2016.
Barber C.B., Dobkin D.P., Huhdanpa H.T. The Quickhull Algorithm for Convex Hulls // ACM Transactions on Mathematical Software. 1996. Vol. 22, № 4.
David M. Mount. Computational Geometry. University of Maryland, 2002.
Брюс П., Брюс Э. Практическая статистика для специалистов Data Science : пер. с англ. СПб., 2018.
Пономарев И.В., Саженкова Т.В., Славский В.В. Метод поиска экстремальных наблюдений в задаче нечеткой регрессии // Известия Алт. гос. ун-та. 2018. №4 (102).
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).