On the Assessment of Homogeneity in a Uniform Regression Model

УДК 519.65

  • T.P. Makhaeva Altai State Pedagogical University (Barnaul, Russia) Email: makhaeva@inbox.ru
  • I.V. Ponomarev Altai State University (Barnaul, Russia) Email: igorpon@mail.ru
Keywords: uniformly regression model, correlation coefficient, convex hull, computational complexity

Abstract

When conducting an exploratory analysis of the data and the subsequent construction of functional dependencies between the observed phenomena, it is often necessary to assess the degree of dependence between the studied data. The basis for obtaining such criteria with a probabilistic approach usually includes the correlation component of the sample. The choice of the used indicator directly depends on the methods of studying the sample, as well as the tools for constructing the model. In most cases, at the initial stage of modeling, it is precisely the homogeneity estimates of the sample that are studied, a good selection of which can reduce the complexity of constructing the relationship between the data.In this paper, we study a method for assessing  the uniformity of sample data when constructing a uniform regression model. The first part of the paper describes the correlation coefficient for the L regression, studies the interval of its change, describes the geometric interpretation and the algorithm for constructing this indicator. In the second part of the paper, we study the method of constructing an indicator of "concentration" of the sample. For this, formulas are derived that relate the correlation coefficient to the magnitude of the original sample. In conclusion, a description is given of the algorithms for constructing the considered indicators, and conclusions are drawn about the complexity of these algorithms.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

T.P. Makhaeva, Altai State Pedagogical University (Barnaul, Russia)

кандидат педагогических наук, доцент кафедры математического анализа и прикладной математики

I.V. Ponomarev, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент кафедры математического анализа

References

Ponomarev I.V., Slavsky V.V. Uniformly fuzzy model of linear regression // Journal of Mathematical Sciences. 2012. Vol. 186, Issue 3.

Сантало Луи А. Интегральная геометрия и геометрические вероятности : пер. с англ. / под ред. Р.В. Амбарцумяна. М., 1983.

Дрейпер Н, Смит Г. Прикладной регрессионный анализ. Множественная регрессия = Applied Regression Analysis : 3-е изд. М., 2007.

Берже М. Геометрия. М., 1984. Т. 1.

Кендалл М., Стюарт А. Статистические выводы и связи. М., 1973. Т. 2.

Берг М., Чеонг О., Кревельд М., Овермарс М. Вычислительная геометрия. Алгоритмы и приложения = Computational Geometry: Algorithms and Applications. М., 2016.

Barber C.B., Dobkin D.P., Huhdanpa H.T. The Quickhull Algorithm for Convex Hulls // ACM Transactions on Mathematical Software. 1996. Vol. 22, № 4.

David M. Mount. Computational Geometry. University of Maryland, 2002.

Брюс П., Брюс Э. Практическая статистика для специалистов Data Science : пер. с англ. СПб., 2018.

Пономарев И.В., Саженкова Т.В., Славский В.В. Метод поиска экстремальных наблюдений в задаче нечеткой регрессии // Известия Алт. гос. ун-та. 2018. №4 (102).

Published
2020-03-06
How to Cite
Makhaeva T., Ponomarev I. On the Assessment of Homogeneity in a Uniform Regression Model // Izvestiya of Altai State University, 2020, № 1(111). P. 115-118 DOI: 10.14258/izvasu(2020)1-19. URL: http://izvestiya.asu.ru/article/view/%282020%291-19.
Section
Математика и механика