Characteristics of a Two-Layer Flow with Evaporation in a Plane Channel Subjected to Heating from the Bottom

  • В.Б. Бекежанова Институт вычислительного моделирования СО РАН (Красноярск, Россия) Email: bekezhanova@mail.ru
  • О.Н. Гончарова Алтайский государственный университет (Барнаул, Россия) Email: gon@math.asu.ru
Keywords: Convective flows, evaporation, exact solutions, stability, spectrum of characteristic perturbations

Abstract

Features of convective regimes arising in a twolayer system with a phase transition are investigated. A mathematical model to describe the evaporative convection in an infinite horizontal channel is based on the Oberbeck — Boussinesq approximation of the Navier — Stokes equations and on the relations on the thermocapillary interface. An exact solution of the governing equations is the Ostroumov — Birikh solution analog. It has a group origination and allows one to take into account simultaneous presence of horizontal and vertical temperature gradients and influence of thermodiffusion effects (direct and inverse) both in the gas-vapor mixture and on the interface. Thermal and topological patterns of the joint flows of an evaporating liquid and a mixture of its vapor with an inert gas are described. Characteristics of vapor quality in the upper layer are studied. New results on stability of the exact solution under given consideration are presented in the paper. Typical forms of arising characteristic perturbations are calculated for the case of equal longitudinal temperature gradients on the external channel walls and of nonzero transversal temperature drop. Governing mechanisms responsible for the formation of each type of the structures are described.

DOI 10.14258/izvasu(2018)4-10

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Margerit J. et al. Interfacial nonequilibrium and Benard-Marangoni instability of a liquid-vapor system // Phys. Rev. E. - 2003. - № 68 (041601).

Das K.S., Ward C.A. Surface thermal capacity and its effects on the boundary conditions at fluid-fluid interfaces // Phys. Rev. E. - 2007. - № 75 (065303).

Бекежанова В.Б., Гончарова О.Н. Задачи испарительной конвекции (обзор) // Прикладная математика и механика. - 2018. - Т. 82. - № 2.

Андреев В.К., Капцов О.В., Пухначёв В.В., Родионов А.А. Применение теоретико-групповых методов в гидродинамике. - Новосибирск, 1994.

Андреев В.К., Бублик В.В., Бытев В.О.

Симметрии неклассических моделей гидродинамики. - Новосибирск, 2003.

Пухначев В.В. Симметрии в уравнениях Навье - Стокса // Успехи механики. - 2006. - № 6.

Bekezhanova V.B., Goncharova O.N., Shefer I.A. Analysis of an exact solution of problem of the evaporative convection (Review). Part I. Plane case // J. Sib. Fed. Univ. Math.&Phys. - 2018. - Vol. 11, № 2.

Bekezhanova V.B., Goncharova O.N., Shefer I.A. Analysis of an exact solution of problem of the evaporative convection (Review). Part II. Three-dimensional ows // J. Sib. Fed. Univ. Math.&Phys. - 2018. - Vol. 11, № 3.

Бирих Р.В. О термокапиллярной конвекции в горизонтальном слое жидкости //ПМТФ. - 1966. - № 3.

Остроумов Г.А. Свободная конвекция в условиях внутренней задачи. Москва ; Ленинград, 1952.

Published
2018-09-14
How to Cite
Бекежанова В., Гончарова О. Characteristics of a Two-Layer Flow with Evaporation in a Plane Channel Subjected to Heating from the Bottom // Izvestiya of Altai State University, 2018, № 4(102). P. 56-61 DOI: 10.14258/izvasu(2018)4-10. URL: http://izvestiya.asu.ru/article/view/%282018%294-10.
Section
Математика и механика