On Approaches to Solving the Problem of an Interface Deformation in a Two-Layer System with Evaporation
Abstract
Mathematical modeling of the two-layer convective fluid flows is performed by the Oberbeck — Boussinesq equations and relations at the thermocapillary interface. Special attention should be paid to the problems with mass transfer at the interfaces. In particular, mass transfer can be a result of evaporation or condensation. Also, the problems with the vapor diffusion and thermodiffusion and diffusive thermal conductivity effects in the gas-liquid layers should be considered. The new solutions of the convection equations are presented to model two-layer flows. The flows are induced by the action of a longitudinal temperature gradient in the transversely directed gravity field. The interface assumed to be rectilinear when developing the analytical solution. The problem of finding the real interface position is solved with the help of the interface conditions. A derivation of the kinematic and dynamic conditions in terms of stream function and vorticity and an equation for the tangential velocity at interface is presented. A method of determination of a smooth deformable interface is discussed.
DOI 10.14258/izvasu(2018)1-12
Downloads
Metrics
References
Гончарова О.Н., Резанова Е.В., Люлин Ю.В., Кабов О.А. Моделирование двухслойных течений жидкости и газа с учетом испарения // Теплофизика и аэромеханика. — 2015. — Т. 22, № 5.
Bekezhanova V.B., Goncharova O.N. Stability of the exact solutions describing the two-layer ows with evaporation at interface // Fluid Dynamics Research. — 2016. — Vol. 48, No 6 (061408).
Бекежанова В.Б., Гончарова О.Н., Резанова Е.В., Шефер И.А. Устойчивость двухслойных течений жидкости с испарением на границе раздела // Известия РАН. Механика жидкости и газа.— 2017. — № 2.
Bekezhanova V.B., Goncharova O.N. Study of the convective fluid flows with evaporation on the basis of the exact solutions in a three-dimensional infine channel // IOP Conf.Series Journal of Physics: Conference Series. — 2017. — Vol. 899, No. 032006. D0I:10.1088/1742-6596/899/3/032006.
Пухначев В.В. Нестационарные аналоги решения Бириха // Известия Алт. гос. ун-та. — 2011. — № 1/2 (69).
De Groot S.R. 1951 Thermodynamics of irreversible processes. — New York, 1951.
Gebhart B., Jaluria Y., Mahajan R.L., Sammakia B. Bouyancy-induced flows and transport — Berlin —Heidelberg —New York — London —Paris —Tokyo, 1988.
Andreev V.K., Gaponenko Yu.A., Goncharova O.N., Pukhnachov V.V. Mathematical models of convection (de Gruyter Studies in Mathematical Physics). — Berlin/Boston: De Gruyter, 2012.
Бирих Р.В. О термокапиллярной конвекции в горизонтальном слое жидкости // ПМТФ. — 1966. — № 3.
Остроумов Г.А. Свободная конвекция в условиях внутренней задачи. — М. ; Л., 1952.
Шлиомис М.И., Якушин В.И. Конвекция в двухслойной бинарной системе с испарением // Гидродинамика. — 1972. — № 4.
Марчук И.В, Кабов О.А. Модель пленочной конденсации пара на криволинейных поверхностях // ДАН. — 2016. — Т. 466, № 1.
Овчарова А.С. Численное решение стационарной задачи Стефана в области со свободной границей // Вычислительные технологии.— 1999. — № 1.
Ovcharova A.S. Multilayer system of films heated from above // Int. J. Heat Mass Transfer. — 2017. — V. 114.
Воеводин А.Ф., Шугрин С.М. Методы решения одномерных эволюционных систем. — Новосибирск, 1993.
Пухначев В.В. Движение вязкой жидкости со свободными границами. — Новосибирск, 1989.
Ovcharova A., Stankus N. A Deformation and a Break of Hanging Thin Film under Microgravity Conditions // FDMP. — 2007. — Vol. 3, No. 4.
Copyright (c) 2018 В.Б. Бекежанова, О.Н. Гончарова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).