Numerical Solution of Two-Dimensional Filtration Problem in the Upper Layers of Soil Considering Suffosion Processes

  • А.Н. Сибин Altai State University (Barnaul, Russia) Email: sibin_anton@mail.ru
  • Н.Н. Сибин Altai State University (Barnaul, Russia) Email: sibin-777@mail.ru
Keywords: multiphase flow, porous medium, suffusion, phase transition, saturation

Abstract

In this paper mathematical model of isothermal internal erosion without deformation of porous medium is studied. Removal of soil particles from flow occurs at a certain magnitude of velocity of filtration. Equations of mass conservation of water, moving solids and stationary porous skeleton along with Darcy’s law for water and moving solid particles and equation for the intensity of suffusion aquifer were used as the mathematical model of the problem. Formulation of the problem and development of the system of equations are described in section 1. The results are parabolic equation with extinction of solution, elliptical equation for pressure and equation of the first order for the porosity of the soil. There is analogy with the classical Masket-Leverett model. Algorithm of numerical solution of two-dimensional initial boundary value problem of internal soil erosion proposed in section 2. The results of numerical investigation of the problem presented in section 3. We found the region of most susceptible to internal suffosion.

DOI 10.14258/izvasu(2017)4-27

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

А.Н. Сибин, Altai State University (Barnaul, Russia)
аспирант факультета математики и информационных технологий
Н.Н. Сибин, Altai State University (Barnaul, Russia)
магистрант факультета математики и информационных технологий

References

Vieira D.A.N., Dabney S.M. Modeling edge effects of tillage erosion // Soil Tillage Research. - 2011. 111(2).

Wilson G. Understanding soil-pipe flow and its role in ephemeral gully erosion // Hydrol. Process. - 2011. - Vol. 25.

Einstein H. A. Der Geschiebetrieb als wahrscheinlichkeits Problem. Mitt. d. Versuchsanstaltf Wasserbau, Eidg. T. H. - Zurich, 1937.

Bonelli S. Erosion of Geomaterials. UK, 2012.

Vardoulakis I., Stavropoulou M., Papanastasiou R. Hydro-Mechanical Aspects of the Sand Production Problem // Transport in Porous Media. - 1996. - 22.

Wang J., Walters D. A., Settari A., Wan R. G. Simulation of cold heavy oil production using an integrated modular approach with emphasis on foamy oil flow and sand production effects 1st Heavy Oil Conference. - 2006.

Papin A. A., Sibin A. N. Model isothermal internal erosion of soil // J. Phys.: Conf. Ser. - 2016. - V. 722(1).

Самарский А.А., Николаев Е.С. Методы решения сеточных уравнений. - М., 1978.

Chetti A., Benamar A., Hazzab A. Modeling of Particle Migration in Porous Media: Application to Soil Suffusion // Transport in Porous Media. - 2016. - V. 113(3).

Сибин А.Н., Сибин Н.Н. Расчет физических характеристик почвогрунтов в процессе внутренней эрозии // МАК: Математики - Алтайскому краю : сборник трудов Всероссийской конференции по математике. - Барнаул, 2017.

How to Cite
Сибин А., Сибин Н. Numerical Solution of Two-Dimensional Filtration Problem in the Upper Layers of Soil Considering Suffosion Processes // Izvestiya of Altai State University, 1, № 4(96) DOI: 10.14258/izvasu(2017)4-27. URL: http://izvestiya.asu.ru/article/view/%282017%294-27.