A Mechanical System with a Local Gauge Symmetry
Abstract
Our methodological aim is to make easy-tointerpret one of the abstract symmetries symmetry with respect to local gauge transformations. An infinite homogeneous string in three-dimensional space is considered. We first assume that free oscillations of the string are described by the function u(x, t) = cos kx exp [−ikct − iF(x, t)]. From the external observers viewpoint each point of the string rotates in the Y Z plane with an additional phase F due to direction changes of axes Y and Z in space and time. Continuously performing active Poincar´e transformations on the standing wave u(x, t) and not affecting the function F we obtain the function for the forced oscillations of a special kind U(x, t) = Ψ(x, t) cos Φ(x, t), where Ψ= exp (iS(x, t)). The phase Φ(x, t) = 0 is called “particle”. It is shown that S is the action of this particle. The particle total energy and generalized momentum that include the potential functions V, A are derived from S. Ψ reduces to an identity the Schrödinger equation with nonlocal Hamiltonian that contains the functions V, A. The identity remains valid when replacing the F with F − f(x, t). This replacement is equivalent to a local gauge transformation in the form of simultaneous replacement of Ψ with exp (if(x, t))Ψ, of V with V −∂tf(x, t) and of A with A+∂xf(x, t). Thus, the investigated model has local gauge symmetry.
DOI 10.14258/izvasu(2016)1-04
Downloads
Metrics
References
Гончаров А.И. Стоячие волны как системы отсчета: классическая модель релятивистского пространства-времени//Известия Алтайского гос. ун-та. Сер. Физика. 2013. -№1/2(77). DOI 10.14258/izvasu(2013)1.2-31
Гончаров А.И. Наглядная интерпретация релятивистской кинематики с помощью метода стоячих волн (часть 1)//Известия Алтайского гос. ун-та. Сер. Физика. -2014. -№1/2(81). DOI 10.14258/izvasu(2014)1.2-27
Гончаров А.И. Интерпретация релятивистской кинематики с помощью метода стоячих волн (часть 2)//Известия Алтайского гос. ун-та. Сер. Физика. -2015. -№1/2(85). DOI 10.14258/izvasu(2015)1.2-02
Shanahan D. A Case for Lorentzian Relativity//Foundations of Physics. -2014. -V. 44, №4.
Гончаров А.И. Релятивистская динамика точки как эмерджентное явление в системе стоячих волн//Известия Алтайского гос. ун-та. Сер. Физика. -2015. -№1/1(85). DOI 10.14258/izvasu(2015)1.1-02
Вейль Г. Электрон и гравитация/Г. Вейль. Математика. Теоретическая физика. -М., 1984.
Poelz G. On the Wave Character of the Electron//ArXiv:1206.0620 . 2012. -URL: http://www.arxiv.org/pdf/1206. 0620v18.pdf (дата обращения 20.1.2016).
Kim Y.S., Noz M.E. Standing Wave in the Lorentz-Covariant World//Foundations of Physics. -2005. -V. 35, №7.
Mellen W.R. Moving Standing Wave and de Broglie Type Wavelength//The American Journal of Physics. -1973. -V. 41, №2.
Декарт Р. Начала философии//Ренэ Декарт. Избранные произведения. -М.; Л., 1950.
Nelson W.M. A Wave-Centric View of Special Relativity //ArXiv:1305.3022v1 . 2013. -URL: http://www.arxiv.org/pdf/1305.3022v1.pdf (дата обращения 5.1.2016).
Bohm D. Wholeness and the Implicate Order//London and New York: Routledge Classics. -2002.
Ребби К. Солитоны//Успехи физических наук. -1980. -Т. 130, вып. 2.
Прохоров Л.В. О физике на планковских расстояниях. Струны и симметрии//Физика элементарных частиц и атомного ядра. 2012. -Т. 43, вып. 1.
Zheng-Johansson J.X. Internally Electrodynamics Particle Model: Its Experimental Basis and Its Predictions//Ядерная физика. -2010. -Т. 73, №3.
Ландау Л.Д., Лифшиц Е.М. Теория поля. -М., 1967.
Барбашов Б.М., Нестеренко В.В. Преобразование Бэклунда для уравнения Лиувилля и калибровочные условия в теории релятивистской струны//Теоретическая и математическая физика. -1983. -Т. 56, №2.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).