Nanoelectromechanical Systems of 4d-Transition Metals (Ru, Rh, Pd) as the Two-Electron Storage Device of Attosecond Energy Pulses

  • С.А. Безносюк Altai State University (Barnaul, Russia) Email: bsa1953@mail.ru
  • М.С. Жуковский Altai State University (Barnaul, Russia) Email: zhukovsky@list.ru
  • О.А. Маслова Altai State University (Barnaul, Russia) Email: maslova_o.a@mail.ru
  • Д.Ю. Максимов Altai State University (Barnaul, Russia) Email: maximov757@mail.ru
  • А. Г. Неудахин Altai State University (Barnaul, Russia) Email: blyum05011991@mail.ru
Keywords: nano energy of materials, quantum NEMS, nanobot, kinetics of relaxation, ruthenium, rhodium, palladium, computer modeling

Abstract

The relaxation transformation of the nanoelectromechanical system (NEMS) of nanobots in the face-center-cubic (fcc) structure of 4d-transition metals (Ru, Rh, Pd) is considered in this paper. The objects of study are 256-atom cube-shaped clusters with fcc lattices limited by planes of (100) at a temperature of 298 K and zero pressure. These clusters have transitioned to the entangled two-electron coherent excited state of the nanobot quantum NEMS under the soft X-ray attosecond pulse. The calculation of interaction energy inside nanobots are performed by the nonlocal density-functional theory method with the orbital envelope approximation. It is shown that residual energy accumulation in the nanobots is the result of NEMS self-organization though special intermediate nonequilibrium quasistationary states with specific one- and two-particle distributions. The nanobot quantum NEMS is formed by two-electron excitation process during an attosecond absorption of the primary pulse. At the first stage of relaxation, the nanobot is expanded while keeping one and two-particle distribution of nuclei. For all the metals (Ru, Rh, Pd), the first mode of spontaneous nanobot self-organization while transitioning into a cuboid with convex-concave faces occurs in the first picosecond. The second mode of nanobot selforganization occurs after tens of picoseconds due to a coherent shear transformation of nanobot bulk and boundary parts. It remains resistant to energy fluctuations. Energy stored in nanobots corresponds to soft X-ray energy quanta 950 eV (Ru256), 1058 eV (Rh256) и 425 eV (Pd256).

DOI 10.14258/izvasu(2015)1.2-01

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Blencowe M. Quantum electromechanical systems // Physics Reports. - 2004. - Vol. 395, №. 3.

Fomin A.S., Zhukovskii M.S., Beznosyuk S.A. Modeling of nanomaterial structure based on quantum-sized mesoparticles // Russian Physics Journal. - 2006. - Vol. 49, №. 7.

Kim S.P. Nonequilibrium quantum evolution of open systems // Condensed Matter Physics. - 2000. - № 1 (21).

Умэдзава Х., Мацумото Х., Татики М. Термополевая динамика и конденсированные состояния. - М., 1985.

Beznosjuk S.A., Minaev B.F., Dajanov R.D., Muldachmetov Z.M. Approximating quasiparticle density functional calculations of small active clusters: Strong electron correlation effects // Int. J. Quant. Chem. - 1990. - Vol. 38, №. 6.

Christensson N., Kauffmann H.F. et al. Origin of long-lived coherences in light-harvesting complexes // J. Phys. Chem. B. - 2014. - № 116 (25).

Halpin A., Johnson Ph.J.M. et al. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences // Nature Chemistry. - 2014. - № 6.

Romero E., Augulis R. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion // Nature Physics. - 2014. - Advanced online publication. DOI:10.1038/nphys3017.

Beznosyuk S.A., Zhukovskii M.S., Potekaev A.I. The theory of motion of quantum electromechanical plas-moid nanobots in a condensed-state medium // Russian Physics Journal. - 2013. - Vol. 56, №. 5.

Beznosyuk S.A., Zhukovsky M.S., Zhukovsky T.M. Theory and Computer Simulation of Quantum NEMS Energy Storage in Materials // International Journal of Nanoscience. - 2015. - Vol. 14, №. 1, 2. D0I:10.1142/ S0219581X14600230.

Давыдов А.С. Квантовая механика : учебное пособие. - 3-е изд. - СПб., 2011.

Безносюк С.А., Важенин С.В., Жуковский М.С., Жуковская Т.М., Маслова О.А. Компьютерное моделирование алгоритмической эволюции квантово-размерных наночастиц // Фундаментальные проблемы современного материаловедения. - 2006. - Т. 3, № 4.

Жуковский М.С., Безносюк С.А., Потекаев А.И., Старостенков М.Д. Теоретические основы компьютерного наноинжиниринга биомиметических наносистем. - Томск, 2011.

Жуковский М.С, Безносюк С.А., Ванчинкхуу Дж. Теоретические основы и компьютерное моделирование фемтосекундного импульсного синтеза активных центров наноструктурных превращений материалов // Фундаментальные проблемы современного материаловедения. - 2013. - Т. 10, № 2.

Beznosyuk S.A. Modern quantum theory and computer simulation in nanotechnologies: Quantum topology approaches to kinematical and dynamical structures of self-assembling processes // Materials Science & Engineering C. - 2002. - Vol. 19/1.

Безносюк С.А., Жуковский М.С., Жуковская Т.М. Топологические и энергетические особенности потенциалов позиционирования и транспорта в наносистемах // Известия вузов. Физика. - 2001. - Т. 44, № 2.

Beznosyuk S.A., Kolesnikov A.V., Mezentzev D.A., Zhukovsky M.S., Zhukovsky T.M. Dissipative processes of information dynamics in nanosystems // Materials Science & Engineering C. - 2002. - Vol. 19, № 1.

Безносюк С.А., Жуковский М.С., Важенин С.В., Лерх Я.В. Компьютерная нанотехнология (КомпНано-Тех) // Свидетельство о государственной регистрации программы для ЭВМ № 2009613043 от 10 июня 2009.

Безносюк С.А., Жуковский М.С., Важенин С.В. Компьютерный наноинжиниринг // Свидетельство о государственной регистрации программы для ЭВМ № 2010612461 от 07.04.2010.

Безносюк С.А., Жуковский М.С., Важенин С.В., Гришко М.С., Маслова О.А. КомпНаноДизайн // Свидетельство о государственной регистрации программы для ЭВМ N2014610930 от 20.01.2014.

How to Cite
Безносюк С., Жуковский М., Маслова О., Максимов Д., Неудахин А. Г. Nanoelectromechanical Systems of 4d-Transition Metals (Ru, Rh, Pd) as the Two-Electron Storage Device of Attosecond Energy Pulses // Izvestiya of Altai State University, 1, № 1/2(85) DOI: 10.14258/izvasu(2015)1.2-01. URL: http://izvestiya.asu.ru/article/view/%282015%291.2-01.