Численное решение одномерной задачи фильтрации с учетом суффозионных процессов

А.Н. Сибин, Н.Н. Сибин

Аннотация


Рассматривается математическая модель изотермической внутренней эрозии без учета деформации пористой среды. При достижении определенной величины скорости фильтрации происходит вынос частиц грунта из области течения. В качестве математической модели используются уравнения сохранения массы для воды, подвижных твердых частиц и неподвижного пористого скелета, а также закон Дарси для воды и подвижных твердых частиц и соотношение для интенсивности суффозионного потока. Дается постановка задачи и проводится преобразование системы уравнений. В результате преобразований для насыщенности водной фазы возникает вырождающееся на решении параболическое уравнение, для давления - эллиптическое уравнение и для пористости грунта - уравнение первого порядка. Имеется аналогия с классической моделью Маскета-Леверетта. Предложен алгоритм численного решения одномерной начально-краевой задачи внутренней эрозии грунта. Представлены результаты численного решения задачи. Найдены скорости движения и давление грунтовых вод, пористость и концентрация подвижных частиц грунта. Кроме того, приведен краткий обзор моделей внутренней суффозии.

Ключевые слова


многофазная фильтрация; пористая среда; суффозия; фазовый переход; насыщенность

Полный текст:

PDF

Метрики статей

Загрузка метрик ...

Metrics powered by PLOS ALM

Ссылки

  • На текущий момент ссылки отсутствуют.