Трехмерные композитные многосеточные конечные элементы оболочечного типа
Аннотация
Предложены процедуры построения криволинейных трехмерных композитных многосеточных конечных элементов (МнКЭ) оболочечного типа для расчета напряженного состояния упругих цилиндрических оболочек, имеющих неоднородную (микронеоднородную) структуру и статическое нагружение. МнКЭ проектируются в локальных декартовых системах координат на основе мелких (базовых) разбиений (моделей) оболочек. При построении МнКЭ (без увеличения их размерности) можно использовать сколь угодно мелкие базовые разбиения оболочек, что позволяет в рамках микроподхода учитывать их неоднородную и микронеоднородную структуру, сложную форму, сложный характер нагружений и закреплений. Напряженно-деформированное состояние в МнКЭ описывается соотношениями трехмерной теории упругости (без введения дополнительных упрощающих гипотез). Перемещения аппроксимируются степенными и лагранжевыми полиномами различных порядков, которые учитывают смещения МнКЭ как жесткого целого. Лагранжевые полиномы эффективно используются при проектировании МнКЭ оболочечного типа. Предлагаемые МнКЭ образуют дискретные модели малой размерности (в 103 ÷ 106 раз меньше размерностей базовых моделей) и порождают приближенные решения, которые быстро сходятся к точным, что дает возможность строить при небольших временных затратах решения с малой погрешностью. Для верификации МнКЭ используется известный численный метод. Разработаны и численно исследованы трехсеточные конечные элементы (ТрКЭ) оболочечного типа. Приведен пример расчета многослойной оболочки с применением разработанных ТрКЭ и базовой модели, которая имеет около 1,4 миллиарда узловых неизвестных метода конечных элементов.
DOI 10.14258/izvasu(2017)4-22
Скачивания
Metrics
Литература
Болотин В.В., Новиков Ю.Н. Механика многослойных конструкций. — М., 1980.
Голушко С.К., Немировский Ю.В. Прямые и обратные задачи механики упругих композитных пластин и оболочек вращения. — М., 2008.
Зенкевич О. Метод конечных элементов в технике. — М., 1975.
Норри Д., Фриз Ж. де. Введение в метод конечных элементов. — М., 1981.
Голованов А.И., Тюленева О.И., Шигабутдинов А.Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. — М., 2006.
Клочков Ю.В., Николаев А.П., Шубович А.А. Анализ напряженно-деформированного состояния оболочек вращения в геометрически нелинейной постановке при различных вариантах интерполяции перемещений. — Волгоград, 2013.
Киселев А.П. Расчет тонких оболочек на прочность в трехмерной постановке без упрощающих гипотез // Известия вузов. Строительство. — 2008. — № 1.
Киселев А.П., Гуреева Н.А., Киселева Р.З. Расчет многослойных оболочек вращения и пластин с использованием объемных конечных элементов // Известия вузов. Строительство. — 2010. — № 1.
Самуль В.И. Основы теории упругости и пластичности. — М., 1982.
Матвеев А.Д., Гришанов А.Н. Одно- и двухсеточное криволинейные элементы трехмерных цилиндрических панелей и оболочек // Известия Алтайского гос. унта. — 2014. — № 1/1. D0I:10.14258/izvasu(2014)1.1-19.
Матвеев А.Д., Гришанов А.Н. Многосеточные криволинейные элементы в трехмерном анализе цилиндрических композитных панелей с полостями и отверстиями // Ученые записки Казанского гос. ун-та. — 2014. — Т. 156, кн. 4.
Матвеев А.Д. Построение сложных многосеточных элементов с микронеоднородной структурой // Численные методы решения задач теории упругости и пластичности : тезисы докладов XXIII Всероссийской конференции (Барнаул, 26-28 июня 2013 г). — Новосибирск, 2013.
Copyright (c) 2017 А.Д. Матвеев, А.Н. Гришанов
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.