Three-Dimensional Composite Multigrid Finite Shell-Type Elements
Abstract
Procedures for developing curvilinear three- dimensional composite multigrid finite elements (MFE) of a shell-like type for calculating the stress state of elastic cylindrical shells having an inhomogeneous (microinhomogeneous) structure and static loading have been proposed. MFE are developed in local Cartesian coordinate systems on the basis of small (basic) shell partitions (models). When constructing MFE (without increasing their dimensionality), arbitrarily small basic shell partitions can be used. Thus, it is possible to take into account their inhomogeneous and microinhomogeneous structure, irregular shape, complex nature of loading and fastening within the micro-approach. The stress-strain state in MFE is described by the formulas of the three-dimensional theory of elasticity (without introducing any additional simplifying hypotheses). The displacements are approximated by power and Lagrange polynomials of various orders, which take into account the displacements of the MFE as a rigid whole. Lagrangian polynomials are effectively used while developing shell-type elements. The proposed MFE yield the small dimensional discrete models (103 ÷ 106 times less than the dimensions of the reference models) and generate some approximate solutions that quickly converge to exact ones, which enable the construction of solutions with a high accuracy for a short time. A known numerical method is used to verify the MFE. Three-grid finite elements of a shell- like type have been developed and numerically studied. An example of a multilayer shell calculation using the developed three-grid finite elements and a reference model that has about 1.4 billion nodal unknowns of finite element method has been given.
DOI 10.14258/izvasu(2017)4-22
Downloads
Metrics
References
Болотин В.В., Новиков Ю.Н. Механика многослойных конструкций. — М., 1980.
Голушко С.К., Немировский Ю.В. Прямые и обратные задачи механики упругих композитных пластин и оболочек вращения. — М., 2008.
Зенкевич О. Метод конечных элементов в технике. — М., 1975.
Норри Д., Фриз Ж. де. Введение в метод конечных элементов. — М., 1981.
Голованов А.И., Тюленева О.И., Шигабутдинов А.Ф. Метод конечных элементов в статике и динамике тонкостенных конструкций. — М., 2006.
Клочков Ю.В., Николаев А.П., Шубович А.А. Анализ напряженно-деформированного состояния оболочек вращения в геометрически нелинейной постановке при различных вариантах интерполяции перемещений. — Волгоград, 2013.
Киселев А.П. Расчет тонких оболочек на прочность в трехмерной постановке без упрощающих гипотез // Известия вузов. Строительство. — 2008. — № 1.
Киселев А.П., Гуреева Н.А., Киселева Р.З. Расчет многослойных оболочек вращения и пластин с использованием объемных конечных элементов // Известия вузов. Строительство. — 2010. — № 1.
Самуль В.И. Основы теории упругости и пластичности. — М., 1982.
Матвеев А.Д., Гришанов А.Н. Одно- и двухсеточное криволинейные элементы трехмерных цилиндрических панелей и оболочек // Известия Алтайского гос. унта. — 2014. — № 1/1. D0I:10.14258/izvasu(2014)1.1-19.
Матвеев А.Д., Гришанов А.Н. Многосеточные криволинейные элементы в трехмерном анализе цилиндрических композитных панелей с полостями и отверстиями // Ученые записки Казанского гос. ун-та. — 2014. — Т. 156, кн. 4.
Матвеев А.Д. Построение сложных многосеточных элементов с микронеоднородной структурой // Численные методы решения задач теории упругости и пластичности : тезисы докладов XXIII Всероссийской конференции (Барнаул, 26-28 июня 2013 г). — Новосибирск, 2013.
Copyright (c) 2017 А.Д. Матвеев, А.Н. Гришанов
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).