On the δ-Pinching Function of the Sectional Curvature of a Compact Connected Lie Group G with a Bi-Invariant Riemannian Metric and a Vectorial Torsion Connection

УДК 517.545

  • E.D. Rodionov Altai State University (Barnaul, Russia) Email: edr2002@mail.ru
  • O.P. Khromova Altai State University (Barnaul, Russia) Email: khromova.olesya@gmail.com
Keywords: sectional curvature, connection with vectorial torsion, Lie groups

Abstract

One of the important problems of Riemannian geometry is the problem of establishing connections between curvature and the topology of a Riemannian manifold, and, in particular, the influence of the sign of sectional curvature on the topological structure of a Riemannian manifold. Of particular importance in these studies is the question of the influence of d-pinching of Riemannian metrics of positive sectional curvature on the geometric and topological structure of the Riemannian manifold. This question is most studied for the homogeneous Riemannian case. In this direction, the classification of homogeneous Riemannian manifolds of positive sectional curvature, obtained by M. Berger, N. Wallach, L. Bergeri, as well as a number of results on d- pinching of homogeneous Riemannian metrics of positive sectional curvature, is well known.

In this paper, we investigate Riemannian manifolds with metric connection being a connection with vectorial torsion. The Levi-Civita connection falls into this class of connections. Although the curvature tensor of these connections does not possess the symmetries of the Levi-Civita connection curvature tensor, it seems possible to determine sectional curvature. This paper studies the d-pinch function of the sectional curvature of a compact connected Lie group G with a biinvariant Riemannian metric and a connection with vectorial torsion. It is proved that it takes the values d(||V ||)∈(0,1].

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

E.D. Rodionov, Altai State University (Barnaul, Russia)

доктор физико-математических наук, профессор, профессор кафедры математического анализа

O.P. Khromova, Altai State University (Barnaul, Russia)

кандидат физико-математических наук, доцент, доцент кафедры математического анализа

References

Громов М. Знак и геометрический смысл кривизны. Ижевск, 1999.

Громол Д., Клиненберг В., Мейер В. Риманова геометрия в целом М., 1971.

Berger M. Les varietes riemannienes homogenes normales a courbure strictement positive // Ann. Sc. Norm. Pisa. 1961. Vol. 15.

Wallach N.R. Compact homogeneous Riemannian manifolds with strictly positive curvature // Ann. Math. 1972. Vol. 2(96).

Bе́rard Bergery L. Les variе́tе́s riemanniennes homog`enes simplement connexes de dimension impaire à courbure strictement positive // J. Math. Pures Appl. 1976. Vol. 55.

Алексеевский Д.В. Однородные римановы пространства отрицательной кривизны // Матем. сб. 1975. Т. 96(138). № 1.

Berard Bergery L. Sur la courbure des metriques riemanniennes invariantes des groupes de Lie et des espaces homogenes // Ann. Sci. Ecole Norm. Sup. 1978. Vol. (4)11.

Milnor J. Curvature of left invariant metric on Lie groups. // Advances in mathematics. 1976. Vol. 21.

Nikonorov Yu.G., Rodionov E.D. Slavskii V.V. Geometry of homogeneous Riemannian manifolds // J. Math. Sci. 20007. Vol. 146(6).

Родионов Е.Д., Славский В.В., Хромова О.П. О секционной кривизне метрических связностей с векторным кручением // Известия Алт. гос. ун-та. 2020. №1(111).

Rodionov E.D., Slavskii V.V. Curvature estimations of left invariant Riemannian metrics on three dimensional Lie groups // Differential Geometry and Application: Proceeding of the 7th International Conference, Brno, Masaryk University in Brno (Czech Republic). 1999.

Published
2020-09-09
How to Cite
Rodionov E., Khromova O. On the δ-Pinching Function of the Sectional Curvature of a Compact Connected Lie Group G with a Bi-Invariant Riemannian Metric and a Vectorial Torsion Connection // Izvestiya of Altai State University, 2020, № 4(114). P. 117-120 DOI: 10.14258/izvasu(2020)4-19. URL: https://izvestiya.asu.ru/article/view/%282020%294-19.
Section
Математика и механика

Most read articles by the same author(s)