Geometry of Nonholonomic Kenmotsu Manifolds
УДК 514.76
Abstract
The concept of the intrinsic geometry of a nonholonomic Kenmotsu manifold M is introduced. It is understood as the set of those properties of the manifold that depend only on the framing of the D^ distribution D of the manifold M, on the parallel transformation of vectors belonging to the distribution D along curves tangent to this distribution. The invariants of the intrinsic geometry of the nonholonomic Kenmotsu manifold are: the Schouten curvature tensor; 1-form η generating the distribution D; the Lie derivative of the metric tensor g along the vector field ; Schouten — Wagner tensor field P, whose components in adapted coordinates are expressed using the equalities . It is proved that, as in the case of the Kenmotsu manifold, the Schouten — Wagner tensor of the manifold M vanishes. It follows that the Schouten tensor of a nonholonomic Kenmotsu manifold has the same formal properties as the Riemann curvature tensor. It is proved that the alternation of the Ricci — Schouten tensor coincides with the differential of the structural form. This property of the Ricci — Schouten tensor is used in the proof of the main result of the article: a nonholonomic Kenmotsu manifold cannot carry the structure of an η-Einstein manifold.
Downloads
Metrics
References
Букушева А.В. О тензоре Схоутена — Вагнера неголономного многообразия Кенмоцу // Труды семинара по геометрии и математическому моделированию. 2019. № 5.
Кириченко В.Ф. О геометрии многообразий Кенмоцу // Доклады Академии наук. 2001. Т. 380. № 5.
Абу-Салеем А., Рустанов А.Р, Мелехина Т.Л. Обобщенные многообразия Кенмоцу постоянного типа // Чебышевский сборник. 2019. Т. 20. № 2. DOI: 10.22405/22268383-2019-20-2-7-21.
Букушева А.В. Многообразия Кенмоцу с распределением нулевой кривизны // Вестник Томского гос. ун-та. Математика и механика. 2020. № 64. DOI: 10.17223/19988621/64/1.
Kenmotsu K. A class of almost contact Riemannian manifolds // Tohoku Math. J. 1972. Vol. 24.
De A. On Kenmotsu manifold // Bulletin of Mathematical Analysis and Applications. 2010. Vol. 2. Issue 3.
Attarchi H. 3-Kenmotsu manifolds // Lobachevskii Journal of Mathematics. 2020. Vol. 41. № 3. DOI: 10.1134/S1995080220030051.
Galaev S.V. Admissible Hyper-Complex Pseudo-Hermitian Structures // Lobachevskii Journal of Mathematics. 2018. Vol. 39. № 1. DOI: 10.1134/S1995080218010122.
Букушева А.В., Галаев С.В. Геометрия почти контактных гиперкэлеровых многообразий // Дифференциальная геометрия многообразий фигур. 2017. № 48.
Галаев С.В. Гладкие распределения с допустимой гиперкомплексной псевдо-эрмитовой структурой // Вестник Башкирского ун-та. 2016. Т. 21. № 3.
Cappelletti-Montano B., De Nicola A., Yudin I. Examples of 3-quasi-Sasakian manifolds // Rend. Sem. Mat. Univ. Pol. Torino. 2015. Vol. 73. № 3-4.
Pitis G. Geometry of Kenmotsu manifolds. Brasov, 2007.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



