Asymptotic Consensus in the Model of Collective Decision Making in a Competitive Market

УДК 519.67

  • Darya G. Algazina Altai State University, Barnaul, Russia Email: darya.algazina@mail.ru
  • Yulia G. Algazina Polzunov Altai State Technical University, Barnaul, Russia Email: algazina@inbox.ru
  • Nikolai N. Shakhovalov Altai State University, Barnaul, Russia Email: snn_1979@mail.ru
  • Elena G. Vdovkina Altai State University, Barnaul, Russia Email: v_elen@mail.ru
  • Svetlana A. Poddubnova Altai State University, Barnaul, Russia Email: aspod@list.ru
Keywords: Cournot model, bounded rationality, asymptotic consensus, collective behavior model, computational experiments

Abstract

The paper considers the problem of reaching consensus in an oligopoly market in the absence of common knowledge among agents. The use of reflexive games and the indicative collective behavior model are the peculiarities of the approach to solve the problem. There is a brief overview of a number of consensus models with similar decision making structures. The object of study is the mutually affecting processes of the agents' actions dynamics in a Oournot oligopoly. The consensus model features for such a market are noted. It is shown that the asymptotic consensus is a static Nash equilibrium in the corresponding oligopoly game in normal form. The study also shows that the problem of reaching consensus yet has no complete analytical solution, even for the classical linear market model. There are no many applicable analytical results obtained for consensus models with similar structures. Only computational experiments can provide the answers to the question of convergence to consensus for many specific dynamics. There are analytical conclusions and results of numerical experiments for a number of practically important cases of the model that presented and discussed with illustrative examples in the study.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Darya G. Algazina, Altai State University, Barnaul, Russia

Candidate of Sciences in Technology, Associate Professor of the Department of Digital Technologies and Business Analytics

Yulia G. Algazina, Polzunov Altai State Technical University, Barnaul, Russia

Candidate of Sciences in Economics, Associate Professor of the Department of Information Systems in Ecoomics

Nikolai N. Shakhovalov, Altai State University, Barnaul, Russia

Candidate of Sciences in Pedagogy, Associate Professor of the Department of Digital Technologies and Business Analytics, Chief of Department

Elena G. Vdovkina, Altai State University, Barnaul, Russia

Candidate of Sciences in Economics, Associate Professor of the Department of Digital Technologies and Business Analytics

Svetlana A. Poddubnova, Altai State University, Barnaul, Russia

Candidate of Sciences in Pedagogy, Associate Professor of the Department of Digital Technologies and Business Analytics

References

Wang Y., Ishii Н., Bonnet F., Defago X. Resilient Consensus for Multi-Agent systems under Adversarial Spreading Processes // IEEE Transactions on Network Science and Engineering. 2022. Vol. 9. No 5. DOI: 10.1109/ TNSE.2022.3176214

Проскурников А.В. Усредняющие алгоритмы и неравенства в задачах многоагентного управления и моделирования : дисс. ... докт. физ.-мат. н. СПб., 2022. 384 c.

Марков А.А. Распространение закона больших чисел на величины, зависящие друг от друга // Известия физикоматематического общества при Казанском университете. 1906. Сер. 2. Т. 15. С. 135-156.

Linstone Н.А., Turoff M. The Delphi Method: Techniques and Applications. Addison-Wesley Pub. Co., 1975. 620 p.

De Groot M.H. Reaching a Consensus // Journal of the American Statistical Association. 1974. Vol. 69. No 345. P. 118-121.

Теория управления (дополнительные главы) : учебное пособие / под ред. Д.А. Новикова. М.: ЛЕНАНД, 2019. 552 с.

Новиков Д.А. Модели динамики психических и поведенческих компонент деятельности в коллективном принятии решений // Управление большими системами. 2020. Вып. 85. С. 206-237.

Algazin G.I., Algazina Yu.G. To the Analytical Investigation of the Convergence Conditions of the Processes of Reflexive Collective Behavior in Oligopoly Models // Automation and Remote Control. 2022. Vol. 83. No 3. P. 367-388.

Geraskin M.I. A Survey of the Latest Advances in Oligopoly Games // Automation and Remote Control. 2023. Vol. 84. No. 6. P. 637-653.

Алгазин Г.И., Алгазина Д.Г. Агрегированные оценки динамики рефлексивного коллективного поведения в модели олигополии Курно // Автоматика и телемеханика. 2024. № 9. С. 124-138.

Published
2025-04-02
How to Cite
Algazina D. G., Algazina Y. G., Shakhovalov N. N., Vdovkina E. G., Poddubnova S. A. Asymptotic Consensus in the Model of Collective Decision Making in a Competitive Market // Izvestiya of Altai State University, 2025, № 1(141). P. 75-80 DOI: 10.14258/izvasu(2025)1-09. URL: https://izvestiya.asu.ru/article/view/%282025%291-09.