On Global Solvability of a Problem of a Viscous Liquid Motion in a Deformable Viscous Porous Medium
УДК 519.63+536
Abstract
The initial-boundary value problem for the system of one-dimensional motion of viscous liquid in a deformable viscous porous medium is considered. The introduction presents the relevance of a theoretical study of this problem, scientific novelty, theoretical and practical significance, methodology and research methods, a review of publications on this topic. The first paragraph shows the conclusion of the model and the statement of the problem. In paragraph 2, we consider the case of motion of a viscous compressible fluid in a poroelastic medium and prove the local theorem on the existence and uniqueness of the problem. In the case of an incompressible fluid, the global solvability theorem is proved in the Holder classes in paragraph 3. In paragraph 4, an algorithm for the numerical solution of the problem is given. Mathematical models of fluid filtration in a porous medium apply to a broad range of practical problems. The examples include but are not limited to filtration near river dams, irrigation, and drainage of agricultural fields, oil and gas production, in particular, the dynamics of hydraulic fractures, problems of degassing coal and shale deposits in order to extract methane; magma movement in the earth's crust, geotectonics in the study of subsidence of the earth's crust, processes occurring in sedimentary basins, etc. A feature of the model of fluid filtration in a porous medium considered in this paper is the inclusion of the mobility of the solid skeleton and its poroelastic properties.
Downloads
References
Poromechanics IV: Proceedings of the Fourth Biot Conference on Poromechanics, Including the Second Frank L. DiMaggio Symposium / Edited by: Hoe I. Ling, Andrew Smyth, and Raimondo Betti. 2009.
Poromechanics VI : proceedings of the sixth Biot Conference on Poromechanics / Edited by Matthieu Vandamme; Patrick Dangla; Jean-Michel Pereira; and Siavash Ghabezloo. 2017.
Антонцев С.Н., Кажихов А.В., Монахов В.Н. Краевые задачи механики неоднородных жидкостей. Новосибирск, 1983.
Meirmanov A. Mathematical Models for Poroelastic Flows // Atlantis Studies in Differential Equations. V. 1. 2014.
Коновалов А.Н. О некоторых вопросах, возникающих при численном решении задач фильтрации двухфазной несжимаемой жидкости // Тр. МИАН СССР. 1973. Т. 122.
Terzaghi K. Theoretical Soil Mechanics. New York, 1943.
Biot M.A. General theory of three-dimensional consolidation // J. Appl. Phys. 1941. Vol.12. № 2.
Френкель Я.И. К теории сейсмических и сейсмоэлектрических явлений во влажной почве // Изв. Акад. наук СССР. 1944. Т. VIII, № 4.
Золотарев П.П. Распространение звуковых волн в насыщенной газом пористой среде с жестким скелетом // Инженерный журнал. 1964. Т. IV.
Николаевский В.Н. О распространении продольных волн в насыщенных жидкостью упругих пористых средах// Инженерный журнал. 1963. Т. III. Вып. 2.
Рахматулин Х.А. Основы газодинамики взаимопроникающих движений сжимаемых сред // ПММ. 1956. Т. XX. Вып. 2.
Бочаров О.Б. О фильтрации двух несмешивающихся жидкостей в сжимаемом пласте // Динамика сплошной среды : c6. науч. тр. АН СССР. Сиб. отд-ние. Ин-т гидродинамики. 1981. Вып. 50.
Vedernikov V.V., Nikolaevskii V.N. Mechanics equations for porous medium saturated by a two-phase liquid // Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza. 1978. № 5.
Бочаров О.Б., Рудяк В.Я., Серяков А.В. Простейшие модели деформирования пороупругой среды, насыщенной флюидами // Физико-технические проблемы разработки полезных ископаемых. 2014. № 2.
Rudyak V.Ya., Bocharov O.B., Seryakov A.V. Hierarchical sequence of models and deformation peculiarities of porous media saturated with fluids // Proceedings of the XLI Summer School-Conference Advanced Problems in Mechanics (APM-2013), 1-6 July, St-Petersburg, 2013.
Abourabia A.M., Hassan K.M., Morad A.M. Analytical solutions of the magma equations for rocks in a granular matrix // Chaos Solutions Fract. 2009. Vol. 42.
Geng Y., Zhang L. Bifurcations of traveling wave solutions for the magma equation // Applied Mathematics and computation. 2010. Vol. 217.
Simpson M., Spiegelman M., Weinstein M.I. Degenerate dispersive equations arising in the study of magma dynamics // Nonlinearity. 2007. V. 20. Issue 1.
Saad A.S., Saad B., Saad M. Numerical study of compositional compressible degenerate two-phase flow in saturated-unsaturated heterogeneous porous media // Computers and Mathematics with Applications. 2016. Vol. 71. Issue 2.
Bear J. Dynamics of Fluids in Porous Media. New York, 1972.
Coussy O. Poromechanics. John Wiley and Sons, Chichester, U.K., 2004.
Morency C., Huismans R.S., Beaumont C., Fullsack P. A numerical model for coupled fluid flow and matrix deformation with applications to disequilibrium compaction and delta stability // Journal of Geophysical Research. 2007. Vol. 112.
Scempton A.W. Effective stress in soils, concrete and ricks // Proceeding of the Conference on Pore Pressure and Suction in soils. 1960.
Athy L.F. Density, porosity, and compaction of sedimentary rocks // Amer. Ass. Petrol. Geol. Bull. 1930. Vol. 14.
Connolly J.A.D., Podladchikov Y.Y., Compaction-driven fluid flow in viscoelastic rock // Geodin. Acta. 1998. Vol. 11.
Audet D.M., Fowler A.C. A mathematical for compaction in sedimentary basins // Geophys. J. Int. 1992. Vol. 110.
Fowler A.C., Yang X. Pressure solution and viscous compaction in sedimentary basins // J. Geophys. Res. 1999. Vol. 104.
Schneider F., Potdevin J.L., Wolf S., Faille I. Mechanical and chemical compaction model for sedimentary basin simulators // Tectonophysics. 1996. Vol. 263.
McKenzie D.P. The generation and compaction of partial melts // J. Petrol. 1984. Vol. 25.
Birchwood R.A., Turcotte D.L. A unified approach to geopressuring, low-permeability zone formation, and secondary porosity generation in sedimentary basins // J. Geophys. Res. 1994. Vol. 99.
Massey B.S. Mechanics of fluids, 6th ed. Chapman and Hall, Boston, Mass, 1989.
Fowler A. Mathematical Geoscience. Springer-Verlag London Limited. 2011.
Yang X.S. Nonlinear viscoelastic compaction in sedimentary basins // Nonlinear Proceeses in Geophysics. 2000. Vol. 7.
Tokareva M.A. Localization of solutions of the equations of filtration in poroelastic medium // Journal of Siberian Federal University. Mathematics & Physics. 2015. Vol. 8(4).
Papin A.A., Tokareva M.A. Correctness of the initial-boundary problem of the compressible fluid filtration in a viscous porous medium // Journal of Physics: Conference Series. 2017. Т. 894. № 1.
Tokareva M.A. Solvability of initial boundary value problem for the equations of filtration in poroelastic media // Journal of Physics: Conference Series. 2016. Vol. 722.
Papin A.A., Tokareva M.A. On Local Solvability of the System of the Equations of One Dimensional Motion of Magma // Journal of Siberian Federal University. Mathematics & Physics. 2017. Vol. 10(3).
Papin A.A., Tokareva M.A. Global solvability of a system of equations of onedimensional motion of a viscous fluid in a deformable viscous porous medium //Journal of Applied and Industrial Mathematics. 2019. Vol. 13(2).
Ладыженская О.А., Мральцева И.И. Линейные и квазилинейные уравнения эллиптического типа. M., 1973.
Koleva M.N., Vulkov L.G. Numerical analysis of one dimensional motion of magma without mass forces // Journal of Computational and Applied Mathematics. 2020. Vol. 366. 1.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



