One-Valued Solvability of a Problem of Elastic Vibrations of Ice in a Channel
Abstract
An initial boundary value problem of elastic vibrations of ice in a channel caused by an external load motion is considered. The mathematical model is based on a system of differential equations that describes the oscillations of the ice cover and motion of liquids in the channel. The ice cover is modeled by an equation of a thin elastic plate. The function of the ice plate deflection satisfies fixed conditions on walls of the channel. The liquid is inviscid and incompressible. The fluid flow potential satisfies the Laplace equation, conditions of impermeability on the walls and channel bottom, and linearized dynamic and kinematic conditions on the ice-liquid interface. One of the fundamental points of the problem is the existence and uniqueness of solutions for the taken coupled system of equations. The paper investigates the problems of the solvability for the coupled dynamic equations for the fluid and the elastic plate. Algorithm for solving the problem and proving the existence of classical solutions is presented in paragraph 1. The initial problem is reduced by applying the Fourier transformation to the problem of oscillation profile across the channel which is solved by the normal mode method. The result is a system of linear differential equations for normal decomposition coefficients of ice deflection in normal modes. The classical solution uniqueness of the considered initial boundary value problem is proved in paragraph 2.
DOI 10.14258/izvasu(2016)1-28
Downloads
Metrics
References
Squire V., Hosking R., Kerr A., Langhorne P. Moving Loads on Ice. — 1996.
Hydroelasticity in Marine Technology / Edited by S. Malenica, N. Vladimir and I. Senjanovic. — 2015.
Коробкин А.А., Папин А.А., Шишмарев К.А. Поведение ледового покрова канала под действием поверхностных волн. // Известия Алтайского гос. ун-та. — 2012. — № 1/1 (73).
Brocklehurst P., Korobkin A.A., Pˇarˇau E.I. Interaction of Hydro-Elastic Waves With a Vertical Wall // Journal Enginering Mathematic. — 2010. — V. 68.
Batyaev E.A., Khabakhpasheva T.I. Hydroelastic Waves in Channel With Free Ice Cover // Fluid Dynamics. — 2015. — № 6.
Шишмарев К.А. Математические вопросы моделирования взаимодействия ледового покрова и гидроупругих волн // Известия Алтайского гос. ун-та. — 2015. — № 1/1 (85).
Шишмарев К.А. Постановка задачи о вязкоупругих колебаниях ледовой пластины в канале в результате движения нагрузки // Известия Алтайского гос. ун-та. — 2015. — № 1/2 (85).
Жесткая В.Д. Численное решение задачи о движении нагрузки по ледяному покрову // ПМТФ. — 1998. — Т. 40, № 4.
Kozin V.M., Zhestkaya V.D., Pogorelova A.V., Chizhumov S.D., Dzhabailov M.P., Morozov V.S., Kustov A.N. Applied Problems of the Dynamics of Ice Cover. — Moscow, 2008.
Хлуднев А.М. Об изгибе упругой пластины с отслоившимся тонким жестким включением // Сиб. журн. индустр. матем. — 2011. — T. 14 (1).
Хлуднев А.М. Об одном уравнении теории пологих оболочек // Динамика сплошной среды. — 1975. — Т. 21.
Иванов Г.В. Теория пластин и оболочек: учебное пособие. — 1980.
Vaigant V.A., Papin A.A. On the Uniqueness of the Solution of the Flow Problem with a Given Vortex // Mathematical notes. — 2014. — V. 96 (6).
Ахмерова И.Г. Автомодельное решение задачи о движении воды и воздуха в деформированном грунте // Известия Алтайского гос. ун-та. — 2015. — № 1/2 (85).
Токарева М.А. Конечное время стабилизации решения уравнений фильтрации жидкости в пороупругой среде // Известия Алтайского гос. ун-та. — 2015. — № 1/2 (85).
Хартман Ф. Обыкновенные дифференциальные уравнения. — М., 1970.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).



