Microstructure and Mechanical Properties of Brass L63 after Friction Mixing Treatment

УДК 669:621.7

  • A.V. Sudarikov Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia) Email: avsudarikov@ispms.ru
  • A.V. Chumaevskii Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia) Email: tch7av@gmail.com
  • A.M. Cheremnov Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia) Email: amc@ispms.ru
  • A.P. Zykova Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia) Email: zykovaap@ispms.ru
  • E.A. Kolubaev Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia) Email: eak@ispms.ru
Keywords: friction mixing treatment, copper alloys, microhardness, grain size, tensile strength

Abstract

The processing of materials by the friction mixing method is one of the advanced technologies for hardening and modifying the surface of metals and alloys in modern mechanical engineering. This technology has been widely used in the processing of aluminum, titanium and, in particular, copper alloys. Recent studies in the field of frictional mixing processing (FMA) of zinc-based copper alloys show that, depending on the technological parameters (speed of rotation and movement of the tool, load) and processing modes, a change in the microstructure and mechanical properties of the material is observed. However, the effect of a multipass FPO on the L63 brass alloy has not actually been studied. Therefore, in this work, we studied the effect of a four-pass FPO on the structure and mechanical properties of the L63 copper alloy. According to the analysis, it was revealed that the microstructure in the mixing zone is a region of equiaxed recrystallized grains with an average grain size of about 1.5-2 μm. Due to severe plastic deformations, a fine-grained structure is formed in the material, which causes the increase of microhardness in the mixing zone. The tensile strength of the material after one pass by the tool increases from 314 to 487 MPa, and after the fourth pass up to 497 MPa, no softening of the metal occurs. No visible defects were found in the cross-section of the material due to the optimally selected processing modes.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

A.V. Sudarikov, Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia)

младший научный сотрудник Лаборатории структурного дизайна перспективных материалов

A.V. Chumaevskii, Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia)

кандидат технических наук, старший научный сотрудник Лаборатории контроля качества материалов и конструкций

A.M. Cheremnov, Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia)

младший научный сотрудник Лаборатории структурного дизайна перспективных материалов

A.P. Zykova, Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia)

кандидат физико-математических наук, заведующая Лабораторией структурного дизайна перспективных материалов

E.A. Kolubaev, Institute of Strength Physics and Materials Science SB RAS (Tomsk, Russia)

доктор технических наук, директор

References

Kim H.S., Kim W.Y., Song K.H. Effect of post-heattreatment in ECAP processed Cu–40% Zn brass // Journal of Alloys and Compounds. 2012. Vol. 536.

Li S. et al. Development of precipitation strengthened brass with Ti and Sn alloying elements additives by using water atomized powder via powder metallurgy route // Materials Chemistry and Physics. 2012. Vol. 135. № 2-3.

Meran C. The joint properties of brass plates by friction stir welding // Materials & design. 2006. Vol. 27. № 9.

Heidarzadeh A., Saeid T., Klemm V. Microstructure, texture, and mechanical properties of friction stir welded commercial brass alloy [Electronic version]. Materials Characterization. 2016. № 119.

Mishra R.S., Ma Z.Y. Friction stir welding and processing // Materials science and engineering: R: reports. 2005. Vol. 50. № 1-2.

Mironov S. Development of grain structure during friction-stir welding of Cu-30Zn brass [Electronic version]. Philosophical Magazine. 2014. № 94.

Wang D. et al. Friction stir welding of discontinuously reinforced aluminum matrix composites: a review // Acta Me-tallurgica Sinica (English Letters). 2014. Vol. 27. № 5.

Barlas Z., Uzun H. Micro structure and mechanical properties of friction stir butt welded dissimilar pure copper/ brass alloy plates //International Journal of Materials Research. 2010. Т 101. № 6.

Heidarzadeh A., Saeid T. A comparative study of microstructure and mechanical properties between friction stir welded single and double phase brass alloys // Materials Science and Engineering: A. 2016. Т. 649.

Emami S., Saeid T. Effects of welding and rotational speeds on the microstructure and hardness of friction stir welded single-phase brass // Acta Metallurgica Sinica (English Letters). 2015. Т 28. № 6.

Published
2022-09-09
How to Cite
Sudarikov A., Chumaevskii A., Cheremnov A., Zykova A., Kolubaev E. Microstructure and Mechanical Properties of Brass L63 after Friction Mixing Treatment // Izvestiya of Altai State University, 2022, № 4(126). P. 67-73 DOI: 10.14258/izvasu(2022)4-10. URL: http://izvestiya.asu.ru/article/view/%282022%294-10.