Three-Dimensional Metric Lie Groups with Vectorial Torsion and Zero Curvature Tensor

УДК 517.795

  • S.V. Klepikova Altai State University (Barnaul, Russia) Email: klepikova.svetlana.math@gmail.com
  • I.V. Ernst Altai State University (Barnaul, Russia) Email: igeh@ya.ru
Keywords: (pseudo)Riemannian manifold, metric connection with vectorial torsion, Lie groups, curvature tensor

Abstract

Recently, the study of (pseudo)Riemannian manifolds with different metric connections different from the Levi-Civita connection becomes relevant.A metric connection with vectorial torsion (also known as a semi-symmetric connection) is one of the often considered connections.The connection between the conformal deformations of Riemannian manifolds and metric connections with vectorial torsion on them was established in the works of K. Yano.Namely, a Riemannian manifold admits a metric connection with vectorial torsion, the curvature tensor of which is zero, if and only if it is conformally flat.Moreover, this connection plays an important role in the case of two-dimensional surfaces since, in this case, any metric connection is a connection with vectorial torsion.Thus, the problem of studying (pseudo)Riemannian manifolds with metric connection with vectorial torsion, the curvature tensor of which is zero, is arisen.This paper is devoted to solving the problem in the case of three-dimensional metric Lie groups. In addition, a mathematical model is presented that allows one to calculate the components of the curvature tensor of a metric connection with vectorial torsion in the case of metric Lie groups.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

S.V. Klepikova, Altai State University (Barnaul, Russia)

аспирант факультета математики и информационных технологий

I.V. Ernst, Altai State University (Barnaul, Russia)

магистрант факультета математики и информационных технологий

References

Cartan E. Sur les variétés à connexion affine et la théorie de la relativité generalisée (deuxiéme partie) // Ann. Ecole Norm. Sup.1925. Vol. 42.

Muniraja G. Manifolds Admitting a Semi-Symmetric Metric Connection and a Generalization of Schur's Theorem // Int. J. Contemp. Math. Sci. 2008. Vol. 3. No 25.

Agricola I., Thier C. The Geodesics of Metric Connections with Vectorial Torsion // Annals of Global Analysis and Geometry. 2004. Vol. 26.

Murathan C., Özgür C. Riemannian manifolds with a semi-symmetric metric connection satisfying some semisymmetry conditions // Proceedings of the Estonian Academy of Sciences. 2008. Vol. 57. No 4.

Yilmaz H.B., Zengin F.Ö., Uysal. S.A. On a Semi Symmetric Metric Connection with a Special Condition on a Riemannian Manifold // European journal of pure and applied mathematics. 2011. Vol. 4. No 2.

Zengin F.Ö., Demirbağ S.A., Uysal. S.A., Yilmaz H.B. Some vector fields on a riemannian manifold with semisymmetric metric connection // Bulletin of the Iranian Mathematical Society. 2012. Vol. 38. No 2.

Agricola I., Kraus M. Manifolds with vectorial torsion // Dierential Geometry and its Applications. 2016. Vol. 46.

Yano K. On semi-symmetric metric connection // Revue Roumame de Math. Pure et Appliquees. 1970. Vol. 15.

Sekigawa K. On some 3-dimensional curvature homogeneous spaces // Tensor N. S. 1977. Vol. 31.

Calvaruso G. Homogeneous structures on three-dimensional Lorentzian manifolds // J. Geom. Phys. 2007. Vol. 57.

Milnor J. Curvature of left invariant metric on Lie groups // Advances in mathematics. 1976. Vol. 21.

Rodionov E.D., Slavskii V.V., Chibrikova L.N. Locally conformally homogeneous pseudo-Riemannian spaces // Siberian Advances in Mathematics. 2007. Vol. 17. No 3.

Cordero L.A., Parker P.E. Left-invariant Lorentzian metrics on 3-dimensional Lie groups // Rend. Mat. 1997. Vol. 17.

Published
2019-09-12
How to Cite
Klepikova S., Ernst I. Three-Dimensional Metric Lie Groups with Vectorial Torsion and Zero Curvature Tensor // Izvestiya of Altai State University, 2019, № 4(108). P. 91-94 DOI: 10.14258/izvasu(2019)4-14. URL: http://izvestiya.asu.ru/article/view/%282019%294-14.
Section
Математика и механика