Localization of Solutions to Equations of Tumor Dynamics

УДК 517.9

  • Vardan B. Pogosyan Altai State University, Barnaul, Russia Email: vardan.pogosyn@yandex.ru
  • Margarita A. Tokareva Lavrentyev Institute of Hydrodynamics SB RAS, Novosibirsk, Russia Email: tma25@mail.ru
  • Aleksandr A. Papin Altai State University, Barnaul, Russia Email: papin@math.asu.ru
Keywords: differential equations, filtration, tumor, localization, porosity

Abstract

This article discusses a mathematical model of tumor dynamics. The tissue is considered as a multiphase three-component medium consisting of extracellular matrix, tumor cells, and extracellular fluid. The extracellular matrix is generally deformable. In the case of the predominant extracellular fluid — tumor cell interaction, the original system of equations is reduced to the one parabolic equation degenerating on the solution with a special right-hand side. The property of a finite perturbation propagation velocity for tumor cell saturation is revealed. The introduction describes the essence of the problem. The second part presents the derivation of a mathematical model of tumor dynamics as a three-phase medium. The third part describes a mathematical model for the case when mechanical interaction with extracellular fluid is neglected. The fourth part considers the case of predominant fluid-cell interaction. The fifth part provides a proof of the theorem on the localization of the solution to the equation for the saturation of tumor cell.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Mollica F., Preziosi L., Rajagopal K.R. Modeling of Biological Materials. Boston: Birkhauser, 2007. 357 p. DOI: 10.1007/ b138320

Astanin S., Tosin A. Mathematical Model of Tumor Cord Growth Along the Source of Nutrient. Mathematical Modeling of Natural Phenomena. 2007. Vol. 2. P. 153-177. DOI: 10.1051/ mmnp:2007007

Adman J.A., Bellomo N. A Survey of Models on Tumor Immune Systems Dynamics. Boston: Birkhauser, 1996. 344 p. DOI: 10.1007/978-0-8176-8119-7

Ambrosi D., Preziosi L. On the Closure of Mass Balance Models for Tumor Growth. Mathematical Models and Methods in Applied Sciences. 2002. Vol. 12. P 737-754. DOI: 10.1142/ S0218202502001878

Preziosi L. Cancer Modeling and Simulation. Boca Raton: CRCPress.Chapman Hall, 2003. 452 p. DOI: 10.1201/9780203494899

Preziosi L., Farina A. On Darcy’s Law for Growing Porous Media. International Journal of Non-Linear Mechanics. 2001. Vol. 37. P. 485-491. DOI: 10.1016/S0020-7462(01)00022-1

Kowalczyk R. Preventing Blow-up in a Chemotaxis Model. Journal of Mathematical Analysis and Applications. 2005. Vol. 305. P. 566-588. DOI: 10.1016/j.jmaa.2004.12.009

Papin A.A., Sibin A.N. Simulation of the Motion of a Mixture of Liquid and Solid Particles in Porous Media with Regard to Internal Suffosion. Fluid Dynamics. 2019. Vol. 54. No 4. P. 520-534. DOI: 10.1134/S0015462819030108

Papin A.A., Sibin A.N. Heat and Mass Transfer in Melting Snow. Journal of Applied Mechanics and Technical Physics. 2021. Vol. 62. No 1. P. 96-104. DOI: 10.1134/S0021894421010120

Koleva M., Vulkov L. Numerical Solution of the Retrospective Inverse Parabolic Problem on Disjoint Intervals. Computation. 2023. Vol. 11. No 204. P. 1-16. DOI: 10.3390/ computation11100204

Antontsev S.N., Diaz J.I., Shmarev S. Energy Methods for Free Boundary Problems. Applications to Nonlinear PDEs and Fluid Mechanics. Washington D.C.: Progress in Nonlinear Differential Equations and Their Applications, 2002. 332 p. DOI: 10.1115/1.1483358

Favin A., Marinoschi G. Degenerate Nonlinear Diffusion Equations. Berlin: Springer, 2012. 143 p. DOI: 10.1007/978-3642-28285-0

Ladyzhenskaya O.A., Solonnikov V.A., Ural’tseva N.N. Linear and Quasilinear Equations of Parabolic Type. M.: Nauka, 1967. 736 p. (in Russ.).

Antontsev S.N., Papin A.A. Localization of Solutions of Equations of a Viscous Gas, with Viscosity Depending on the Density. Dinamika Sploshnoy Sredy, Novosibirsk: Institut Gidrodinamiki. 1988. Vol. 82. P. 24-40. (in Russ.).

Antontsev S.N. Localization of Solutions of Degenerate Equations of Continuum Mechanics. Novosibirsk: Akademiya Nauk SSSR Sibirskoe Otdelenie Instituta Gidrodinamiki, 1986. 109 p. (in Russ.).

Published
2024-04-05
How to Cite
Pogosyan V. B., Tokareva M. A., Papin A. A. Localization of Solutions to Equations of Tumor Dynamics // Izvestiya of Altai State University, 2024, № 1(135). P. 138-143 DOI: 10.14258/izvasu(2024)1-20. URL: http://izvestiya.asu.ru/article/view/%282024%291-20.