On Homogeneous Ricci Solitons on Three-Dimensional Locally Homogeneous (Pseudo)Riemannian Spaces with a Semisymmetric Connection
УДК 514.765
Abstract
Ricci solitons are a natural generalization of Einstein metrics and represent a solution to the Ricci flow. In the general case, they were studied by many mathematicians, which was reflected in the reviews by H.-D. cao, R.M. Aroyo — R. Lafuente. This issue has been most studied in the homogeneous Riemannian case, as well as in the case of trivial Ricci solitons, or Einstein metrics. In this paper, we study homogeneous Ricci solitons on three-dimensional locally homogeneous (pseudo) Riemannian spaces with a nontrivial isotropy group and a semisymmetric connection. A classification of homogeneous Ricci solitons on three-dimensional locally homogeneous (pseudo) Riemannian spaces with a semisymmetric connection is obtained. It is proved that in the case of Lie groups there exist nontrivial invariant Ricci solitons. Earlier, L. cerbo showed that all invariant Ricci solitons are trivial or Einstein metrics on unimodular Lie groups with a left-invariant Riemannian metric and a Levi-Civita connection. In the non-unimodular case, a similar result was obtained by P.N. Klepikov and D.N. Oskorbin up to dimension four inclusively. The problem remains open for the cases of dimension 5 and higher.
Downloads
Metrics
References
Cartan Е. Sur les Vari'et'es 'a Connexion Affine et la Th'eorie de la Relativit'e G'en'eralis'ee (deuxi'eme partie) // Annales Scientifiques De L'Ecole Normale Su-perieure. 1925. Vol. 42. P. 17-88. DOI: 10.24033/asens.761
Muniraja G. Manifolds Admitting a Semi-Symmetric Metric Connection and a Generalization of Schur’s Theorem // International Journal of Contemporary Mathematical Sciences. 2008. Vol. 3. No 25. P 1223-1232. DOI: 10.12988/ijcms
Agricola I., Thier C. The Geodesics of Metric Connections with Vectorial Torsion // Annals of Global Analysis and Geometry. 2004. Vol. 26. P. 321-332. DOI: 10.1023/B:AGAG. 0000047509.63818.4f
Murathan C., Ozgur C. Riemannian Manifolds with a Semi-symmetric Metric Connection Satisfying some Semisymmetry Conditions // Proceedings of the Estonian Academy of Sciences. 2008. Vol. 57. No 4. P. 210-216. DOI: 10.3176/ proc.2008.4.02
Yilmaz H.B., Zengin F.O., Uysal. S.A. On a Semi Symmetric Metric Connection with a Special Condition on a Rie-mannian Manifold // European Journal of Pure and Applied Mathematics. 2011. Vol. 4. No 2. P. 152-161.
Zengin F.O., Demirba“g S.A., Uysal. S.A., Yilmaz H.B. Some Vector Fields on a Riemannian Manifold with Semi-symmetric Metric Connection // Bulletin of the Iranian Mathematical Society. 2012. Vol. 38. No 2. P 479-490.
Agricola I., Kraus M. Manifolds with Vectorial Torsion // Differential Geometry and its Applications. 2016. Vol. 45. P 130-147. DOI: 10.1016/j.difgeo.2016.01.004
Yano K. On Semi-symmetric Metric Connection // Romanian Journal of Pure and Applied Mathematics. 1970. Vol. 15. P. 1579-1586.
Barua B., Ray A. Kr. Some Properties of a Semi-symmetric Metric Connection in a Riemannian Manifold // Indian Journal of Pure & Applied Mathematics. 1985. Vol. 16. No 7. P. 736-740.
De U. C., De B. K. Some Properties of a Semi-symmetric Metric Connection on a Riemannian Manifold // Istanbul Univer-sitesi Fen Fakultesi Matematik Bolumu. 1995. Vol. 54. P. 111-117.
Cordero L. A., Parker PE. Left-invariant Lorentzian Metrics on 3-dimensional Lie Groups // Rendiconti di Mate-matica e delle sue Applicazioni. 1997. Vol. 17. P 129-155.
Клепиков П.Н., Оскорбин Д.Н., Однородные инвариантные солитоны Риччи на четырехмерных группах Ли// Известия Алтайского государственного университета. 2015. Т. 85. № 1/2. С. 115-122. DOI: 10.14258/ izvasu(2015)1.2-21
Klepikov PN., Rodionov E.D., Khromova O.P Threedimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semi-symmetric Metric Connection // Russian Mathematics. 2022. Vol. 66. No 5. P 65-69. DOI: 10.26907/0021-3446-2022-5-80-85
Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на трехмерных неунимоду-лярных группах Ли с левоинвариантной лоренцевой метрикой и полусимметрической связностью // Сибирские электронные математические известия. 2023. Т. 20. № 1. C. 48-61. DOI: 10.33048/semi.2023.20.005
Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на метрических группах Ли с полусимметрической связностью // Итоги науки и техники. Современные проблемы математики. 2023. Т. 222. C. 19-29. DOI: 10.36535/0233-6723-2023-222-19-29
Хромова О.П. Применение пакетов символьных вычислений к исследованию оператора одномерной кривизны на нередуктивных однородных псевдоримановых многообразиях // Известия Алтайского государственного университета. 2017. No 1/1. С. 140-143. DOI: 10.14258/ izvasu(2017)1-28
Sekigawa K. On Some 3-dimensional Curvature Homogeneous Spaces // Tensor New Series. 1977. Vol. 31. P. 77-87.
Calvaruso G. Homogeneous Structures on Threedimensional Lorentzian Mani-folds // Journal of Geometry and Physics. 2007. Vol. 57. P. 1279-1291. DOI: 10.1016/j. geomphys.2006.10.005
Можей Н.П. Когомологии трехмерных однородных пространств // Труды БГТУ Минск: БГТУ 2014. № 6 (170). С. 13-18.
Бессе А. Многообразия Эйнштейна / пер. с англ.: в 2 т. М.: Мир, 1990. 384 c. DOI: 10.1007/978-3-540-74311-8
Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. М.: Наука, 1988. Т. 2. 416 c.
Copyright (c) 2024 Виталий Владимирович Балащенко, Павел Николаевич Клепиков, Евгений Дмитриевич Родионов, Олеся Павловна Хромова
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).