On Homogeneous Ricci Solitons on Three-Dimensional Locally Homogeneous (Pseudo)Riemannian Spaces with a Semisymmetric Connection

УДК 514.765

  • Vitaly V. Balashchenko Belarusian State University, Minsk, Belarus Email: vitbal@tut.by
  • Pavel N. Klepikov Altai State University, Barnaul, Russia Email: askingnetbarnaul@gmail.com
  • Evgeniy D. Rodionov Altai State University, Barnaul, Russia Email: edr2002@mail.ru
  • Olesya P. Khromova Altai State University, Barnaul, Russia Email: khromova.olesya@gmail.com
Keywords: locally homogeneous space, Ricci soliton, semi-symmetric connection, invariant (pseudo) Riemannian metric

Abstract

Ricci solitons are a natural generalization of Einstein metrics and represent a solution to the Ricci flow. In the general case, they were studied by many mathematicians, which was reflected in the reviews by H.-D. cao, R.M. Aroyo — R. Lafuente. This issue has been most studied in the homogeneous Riemannian case, as well as in the case of trivial Ricci solitons, or Einstein metrics. In this paper, we study homogeneous Ricci solitons on three-dimensional locally homogeneous (pseudo) Riemannian spaces with a nontrivial isotropy group and a semisymmetric connection. A classification of homogeneous Ricci solitons on three-dimensional locally homogeneous (pseudo) Riemannian spaces with a semisymmetric connection is obtained. It is proved that in the case of Lie groups there exist nontrivial invariant Ricci solitons. Earlier, L. cerbo showed that all invariant Ricci solitons are trivial or Einstein metrics on unimodular Lie groups with a left-invariant Riemannian metric and a Levi-Civita connection. In the non-unimodular case, a similar result was obtained by P.N. Klepikov and D.N. Oskorbin up to dimension four inclusively. The problem remains open for the cases of dimension 5 and higher.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Vitaly V. Balashchenko, Belarusian State University, Minsk, Belarus

Candidate of Sciences in Physics and Mathematics, Associate Professor of the Department of Geometry, Topology and Methods of Teaching Mathematics

Pavel N. Klepikov, Altai State University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Lecturer at the Department of Mathematical Analysis

Evgeniy D. Rodionov, Altai State University, Barnaul, Russia

Doctor of Sciences in Physics and Mathematics, Professor, Professor of the Department of Mathematical Analysis

References

Cartan Е. Sur les Vari'et'es 'a Connexion Affine et la Th'eorie de la Relativit'e G'en'eralis'ee (deuxi'eme partie) // Annales Scientifiques De L'Ecole Normale Su-perieure. 1925. Vol. 42. P. 17-88. DOI: 10.24033/asens.761

Muniraja G. Manifolds Admitting a Semi-Symmetric Metric Connection and a Generalization of Schur’s Theorem // International Journal of Contemporary Mathematical Sciences. 2008. Vol. 3. No 25. P 1223-1232. DOI: 10.12988/ijcms

Agricola I., Thier C. The Geodesics of Metric Connections with Vectorial Torsion // Annals of Global Analysis and Geometry. 2004. Vol. 26. P. 321-332. DOI: 10.1023/B:AGAG. 0000047509.63818.4f

Murathan C., Ozgur C. Riemannian Manifolds with a Semi-symmetric Metric Connection Satisfying some Semisymmetry Conditions // Proceedings of the Estonian Academy of Sciences. 2008. Vol. 57. No 4. P. 210-216. DOI: 10.3176/ proc.2008.4.02

Yilmaz H.B., Zengin F.O., Uysal. S.A. On a Semi Symmetric Metric Connection with a Special Condition on a Rie-mannian Manifold // European Journal of Pure and Applied Mathematics. 2011. Vol. 4. No 2. P. 152-161.

Zengin F.O., Demirba“g S.A., Uysal. S.A., Yilmaz H.B. Some Vector Fields on a Riemannian Manifold with Semi-symmetric Metric Connection // Bulletin of the Iranian Mathematical Society. 2012. Vol. 38. No 2. P 479-490.

Agricola I., Kraus M. Manifolds with Vectorial Torsion // Differential Geometry and its Applications. 2016. Vol. 45. P 130-147. DOI: 10.1016/j.difgeo.2016.01.004

Yano K. On Semi-symmetric Metric Connection // Romanian Journal of Pure and Applied Mathematics. 1970. Vol. 15. P. 1579-1586.

Barua B., Ray A. Kr. Some Properties of a Semi-symmetric Metric Connection in a Riemannian Manifold // Indian Journal of Pure & Applied Mathematics. 1985. Vol. 16. No 7. P. 736-740.

De U. C., De B. K. Some Properties of a Semi-symmetric Metric Connection on a Riemannian Manifold // Istanbul Univer-sitesi Fen Fakultesi Matematik Bolumu. 1995. Vol. 54. P. 111-117.

Cordero L. A., Parker PE. Left-invariant Lorentzian Metrics on 3-dimensional Lie Groups // Rendiconti di Mate-matica e delle sue Applicazioni. 1997. Vol. 17. P 129-155.

Клепиков П.Н., Оскорбин Д.Н., Однородные инвариантные солитоны Риччи на четырехмерных группах Ли// Известия Алтайского государственного университета. 2015. Т. 85. № 1/2. С. 115-122. DOI: 10.14258/ izvasu(2015)1.2-21

Klepikov PN., Rodionov E.D., Khromova O.P Threedimensional Nonunimodular Lie Groups with a Riemannian Metric of an Invariant Ricci Soliton and a Semi-symmetric Metric Connection // Russian Mathematics. 2022. Vol. 66. No 5. P 65-69. DOI: 10.26907/0021-3446-2022-5-80-85

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на трехмерных неунимоду-лярных группах Ли с левоинвариантной лоренцевой метрикой и полусимметрической связностью // Сибирские электронные математические известия. 2023. Т. 20. № 1. C. 48-61. DOI: 10.33048/semi.2023.20.005

Клепиков П.Н., Родионов Е.Д., Хромова О.П. Инвариантные солитоны Риччи на метрических группах Ли с полусимметрической связностью // Итоги науки и техники. Современные проблемы математики. 2023. Т. 222. C. 19-29. DOI: 10.36535/0233-6723-2023-222-19-29

Хромова О.П. Применение пакетов символьных вычислений к исследованию оператора одномерной кривизны на нередуктивных однородных псевдоримановых многообразиях // Известия Алтайского государственного университета. 2017. No 1/1. С. 140-143. DOI: 10.14258/ izvasu(2017)1-28

Sekigawa K. On Some 3-dimensional Curvature Homogeneous Spaces // Tensor New Series. 1977. Vol. 31. P. 77-87.

Calvaruso G. Homogeneous Structures on Threedimensional Lorentzian Mani-folds // Journal of Geometry and Physics. 2007. Vol. 57. P. 1279-1291. DOI: 10.1016/j. geomphys.2006.10.005

Можей Н.П. Когомологии трехмерных однородных пространств // Труды БГТУ Минск: БГТУ 2014. № 6 (170). С. 13-18.

Бессе А. Многообразия Эйнштейна / пер. с англ.: в 2 т. М.: Мир, 1990. 384 c. DOI: 10.1007/978-3-540-74311-8

Кобаяси Ш., Номидзу К. Основы дифференциальной геометрии. М.: Наука, 1988. Т. 2. 416 c.

Published
2024-04-05
How to Cite
Balashchenko V. V., Klepikov P. N., Rodionov E. D., Khromova O. P. On Homogeneous Ricci Solitons on Three-Dimensional Locally Homogeneous (Pseudo)Riemannian Spaces with a Semisymmetric Connection // Izvestiya of Altai State University, 2024, № 1(135). P. 76-81 DOI: 10.14258/izvasu(2024)1-10. URL: http://izvestiya.asu.ru/article/view/%282024%291-10.