Alloys with a Cellular Dislocation Substructure: Hardening Mechanisms and Their Contributions to Flow Stresses

УДК 539.373:669.35:539.214

  • Lyudmila I. Trishkina Tomsk State University of Architecture and Building, Tomsk, Russia Email: trishkina.53@mail.ru
  • Anatoly A. Klopotov Tomsk State University of Architecture and Building, Tomsk, Russia Email: klopotovaa@tsuab.ru
  • Tatiana V. Cherkasova Tomsk State University of Architecture and Building, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia Email: cherkasova_tv@mail.ru
  • Alexander I. Potekaev National Research Tomsk State University, Tomsk, Russia, Tomsk Scientific Center SB RAS, Tomsk, Russia Email: potekaev@spti.tsu.ru
  • Vladislav I. Borodin National Research Tomsk State University, Tomsk, Russia Email: v.borodin@gtt.gazprom.ru
Keywords: Cu-Mn alloys, solid solution hardening, dislocation substructures

Abstract

The study covers dilute Cu-Mn alloys with a cellular dislocation substructure formed during deformation. The contribution to the flow stress caused by the cellular dislocation substructure is evaluated, and relative roles of various deformation resistance mechanisms are determined. The analysis of electron microscopic images of thin foils of deformed low-alloy Cu-Mn alloys shows the contribution of various dislocation substructure parameters. Such parameters are the scalar dislocation density, dislocation densities in cell walls, boundaries of disoriented cells, ragged sub-boundaries, boundaries of band and fragmented substructures, and grain boundaries. It is found that the contribution of disorientations at cell boundaries increases along with the increase of the misoriented cell boundaries density and the disorientation angle. The efficiency of the cell walls performed as obstacles to sliding is related to the appearance of disorientations through the cell boundaries and their increase with increasing strain. The appearance of disorientations enhances the barrier drag effect in a cellular dislocation substructure.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Lyudmila I. Trishkina, Tomsk State University of Architecture and Building, Tomsk, Russia

Doctor of Sciences in Physics and Mathematics, Professor of the Department of Physics, Chemistry and Theoretical Mechanics

Anatoly A. Klopotov, Tomsk State University of Architecture and Building, Tomsk, Russia

Doctor of Sciences in Physics and Mathematics, Professor of the Department of Applied Mechanics and Materials Sciences

Tatiana V. Cherkasova, Tomsk State University of Architecture and Building, Tomsk, Russia; National Research Tomsk Polytechnic University, Tomsk, Russia

кандидат физико-математических наук, доцент кафедры физики, химии и теоретической механики; старший преподаватель Отделения экспериментальной физики

Alexander I. Potekaev, National Research Tomsk State University, Tomsk, Russia, Tomsk Scientific Center SB RAS, Tomsk, Russia

Doctor of Sciences in Physics and Mathematics, Professor of Department of General and Experimental Physics

Vladislav I. Borodin, National Research Tomsk State University, Tomsk, Russia

Research Engineer of the Department of General and Experimental Physics

References

Конева Н.А., Козлов Э.В. Природа субстnуктуnного упрочнения // Известия вузов. Физика. 1982. № 8. С. 3-14. DOI: 10.1007/BF00895238

Зеегер A. Дисклинации и механические свойства кристаллов. М.: ИИЛ, 1960. С. 179-289.

Фридель Ж. Дислокации. М.: Мир. 1967. 643 с.

Коновалова Е.В., Перевалова О.Б., Конева Н.А., Иванов К.В., Козлов Э.В. Исследование зеренной структуры сплавов Cu-Al и Cu-Mn методами дифракции обратно рассеянных электронов и оптической металлографии // Известия РАН. Серия физическая. 2014. Т. 78. № 4. С. 384-387. DOI: 10.3103/S1062873814040182

Коновалова Е.В., Перевалова О.Б., Конева Н.А., Иванов К.В., Козлов Э.В. Влияние микроискажений и полных среднеквадратичных смещений атомов на параметры двойниковых границ зерен в сплавах на основе меди // Фундаментальные проблемы современного материаловедения. 2013. Т. 10. № 2. С. 272-277.

Han D., Van Z., Yang Y., Shi F., Li X.W. A Good Strength-ductility Match in Сц-Mn Alloys with High Stacking Fault Energies: Determinant effect of short range ordering // Scripta Materialia. 2017. Vol. 133. P. 59-64. DOI: 10.1016/j. scriptamat.2017.02.010

Han D., Guan X.J., Yang Y., Shi F., Li X.W. Anomalous Recovery of Work Hardening Rate in Cu-Mn Alloys with High Stacking Fault Energies under Uniaxial Compression // Materials Science and Engineering: A. 2019. Vol. 743. P. 745-754. DOI: 10.1016/j.msea.2018.11.103

Hana D., Zhanga Y.J., Li X.W. A Crucial Impact of Short-Range Ordering on the Cyclic Deformation and Damage Behavior of Face-Centered Cubic Alloys: a Case Study on Cu-Mn Alloys // Acta Materialia. 2021. Vol. 205. P. 116559. DOI: 10.1016/j.actamat.2020.116559

Конева Н.А., Тришкина Л.И., Козлов Э.В. Физика субструктурного и зернограничного упрочнения // Фундаментальные проблемы современного материаловедения. 2014. Т. 11. № 1. С. 40-49.

Владимиров В.И., Романов А.Е. Дисклинации в кристаллах. Л.: Наука, Ленинградское отделение. 1986. 223 с.

Фрост Т.Дж., Эшби М.Ф. Карты механизмов деформации. Челябинск: Металлургия. 1989. 325 с.

Колобов Ю.Р, Каблов Е.Н., Козлов Э.В., Конева Н.А. и др. Структура и свойства интерметаллидных материалов с нанофазным упрочнением. М.: МИСиС. 2008. 327 с.

Конева Н.А., Козлов Э.В. Закономерности субструктурного упрочнения // Известия вузов. Физика. 1991. № 3. С. 56-70. DOI: 10.1007/BF00894926

Raj S.V, Pharr R.M. A Compilation and Analysis of Data for the Stress Dependence of the Subgrain Size // Materials Science and Engineering. 1986. Vol. 81. P. 217-237. DOI: 10.1016/0025-5416(86)90265-X

Kozlov E.V, Koneva N.A. Intermal Fields and Other Contributions to Flow Stress // Materials Science and Engineering. 1997. Vol. A234-236. P. 982-985. DOI: doi. org/10.1016/S0921-5093(97)00381-X

Салтыков С.А. Стереометрическая металлография. М.: Металлургия. 1970. 376 с.

Конева Н.А. Черкасова Т.В., Тришкина, Л.И., Попова Н.А., Громов В.Е., Аксенова К.В. Дислокационная структура и дислокационные субструктуры. Электронно-микроскопические методы измерения их параметров. Новокузнецк: СибГИУ, 2019. 136 с.

Published
2024-04-05
How to Cite
Trishkina L. I., Klopotov A. A., Cherkasova T. V., Potekaev A. I., Borodin V. I. Alloys with a Cellular Dislocation Substructure: Hardening Mechanisms and Their Contributions to Flow Stresses // Izvestiya of Altai State University, 2024, № 1(135). P. 67-75 DOI: 10.14258/izvasu(2024)1-09. URL: http://izvestiya.asu.ru/article/view/%282024%291-09.