Temperature Effect of Spatial Distribution of EAS’s Electron Component of the Tunka-Grande Scintillation Array
УДК 53.08 : 520.16
Abstract
The paper discusses the technology for temperature correction of the Tunka-Grande scintillation array data. The temperature correction of the density spatial distribution function (SDF) of extensive air shower (EAS) electrons is performed using the data obtained from solving two following problems. The first one is the continuous monitoring of the atmosphere temperature profile in the area where the array is located. It is solved using the AIRS/AMSU-ATMS hyperspectral data from the Aqua and NOAA satellites, along with the calculated predictions of the WRF regional weather model. The second one is the computer complex created and developed by the authors to adjust the Tunka-Grande array readings of the registered EAS to the readings of the standard undisturbed atmosphere. The solution to this problem comes from the sensitivity theory (developed at the Altai State University) of cosmic ray fluxes to variations in atmospheric characteristics.
Atmosphere temperature profile variations at the TAIGA observatory location during winter are obtained. It is shown that changes of electron SDFs caused by these variations can exceed ~10 %.
The proposed method of temperature correction helps adjust the Tunka-Grande array readings to the readings of the standard undisturbed atmosphere.
Downloads
Metrics
References
Abbasi R.U., Abe M., Abu-Zayyad T., et al. Study of Ultra-High Energy Cosmic Ray Composition using Telescope Array’s Middle Drum Detector and Surface Array in Hybrid Mode // Astroparticle Physics. 2015. Vol. 64. P. 49–62. DOI: 10.1016/j.astropartphys.2014.11.004
Aab A., Abreu P., Aglietta M., et al. (Pierre Auger Collaboration) Evidence for a Mixed Mass Composition at the 'Ankle' in the Cosmic-Ray Spectrum // Physics Letters B. 2016. Vol. 762. P. 288–295. DOI: 10.1016/j.physletb.2016.09.039
Amenomori M., Bao Y.W., Bi X., et al. (Tibet ASy Collaboration). First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source // Physical Review Letters. 2019. Vol. 123. Art. No 051101. DOI: 10.1103/ PhysRevLett.123.051101
Abeysekara A.U., Albert A. Alfaro R., et al. (HAWC Collaboration) Multiple Galactic Sources with Emission above 56 TeV Detected by HAWC // Physical Review Letters. 2020. Vol. 124. Art. No 021102. DOI: 10.1103/PhysRevLett.124.021102
Abeysekara A.U., Albert A. Alfaro R., et al. (HAWC Collaboration) HAWC Observations of the Acceleration of Very-High-Energy Cosmic Rays in the Cygnus Cocoon // Nature Astronomy. 2021. Vol. 5. P. 465-471. DOI: 10.1038/ s41550-021-01318-y
Amenomori M., Bao Y.W., Bi X., et al. (Tibet ASy Collaboration). Potential PeVatron Supernova Remnant G106.3+2.7 seen in the Highest-Energy Gamma Rays // Nature Astronomy. 2021. Vol. 5. P. 460-464. DOI: 10.1038/s41550-020-01294-9
Cao Z., Aharonian F.A., An Q., et al. Ultrahigh-energy Photons up to 1.4 Petaelectronvolts from 12 y-ray Galactic Sources // Nature. 2021. Vol. 594. P. 33-36. DOI: 10.1038/ s41586-021-03498-z
Budnev N., Astapov I., Bezyazeekov P. (TAIGA Experiment) TAIGA — A Hybrid Array for High Energy Gamma-ray Astronomy and Cosmic-ray Physics // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2022. Vol. 1039. Art. No 167047. DOI: 10.1016/j.nima.2022.167047
Astapov I.I., Bezyazeekov P.A., Blank M. (TAIGA Experiment) Cosmic-Ray Research at the TAIGA Astrophysical Facility: Results and Plans // Journal of Experimental and Theoretical Physics. 2022. Vol. 134. No 4. P. 469-478. DOI: 10.1134/S1063776122040136
Astapov I., Bezyazeekov P., Bonvech E., et al. (TAIGA Experiment). The TAIGA — a Hybrid Detector Complex in Tunka Valley for Astroparticle Physics, Cosmic Ray Physics and Gamma-Ray Astronomy // Physics of Atomic Nuclei. 2023. Vol. 86. No 4. P. 471-477. DOI: 10.1134/S1063778823040051
Ivanova A.L., Astapov I., Bezyazeekov P. (TAIGA Experiment). Scintillation Experiment on the Study of Cosmic Rays and Gamma Fluxes in the Tunka Valley // Physics of Atomic Nuclei. 2023. Vol. 86. No 4. P. 478-482. DOI: 10.1134/ S1063778823040221
Aumann H.H., Chahine M.T., Gautier C., et al. AIRS/ AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems // IEEE Transactions on Geoscience and Remote Sensing. 2003. Vol. 41. P. 253-264. DOI: 10.1109/TGRS.2002.808356
Skamarock W.C., Klemp J.B., Dudhia J., et al. A Description of the Advanced Research WRF Version 4 // NCAR Tech. Note. 2019. 145 p. DOI: 10.5065/1dfh-6p97
Lagutin A.A., Mordvin E.Yu., Volkov N.V., Revyakin A.I. Restoration of the All-Weather Mode of the AIRS/AMSU Hyperspectral System of the AQUA Satellite Using the ATMS Microwave Radiometer of the SUOMI-NPP and NOAA-20 Satellites // Optoelectronics, Instrumentation and Data Processing. 2022. Vol. 58. No 2. P. 180-187. DOI: 10.3103/ S8756699022020066
Weng F., Zou X., Sun N., et al. Calibration of Suomi National Polar-orbiting Partnership Advanced Technology Microwave Sounder // Journal of Geophysical Research: Atmospheres. 2013. Vol. 118. No 11. P. 11187-11200. DOI: 10.1002/jgrd.50840
Goldberg M.D., Kilcoyne H., Cikanek H., Mehta A. Joint Polar Satellite System: The United States Next Generation Civilian Polar-orbiting Environmental Satellite System // Journal of Geophysical Research: Atmosperes. 2013. Vol. 118. Issue 24. P. 13463-13475. DOI: 10.1002/2013JD020389
Лагутин А.А., Учайкин В.В. Метод сопряженных уравнений в теории переноса космических лучей высоких энергий : монография. Барнаул: Изд-во Алт. ун-та, 2013. 293 с.
Lagutin A.A., Goncharov A.I., Raikin R.I., et al. Atmospheric Effects of Electron and Muon Components of Cosmic Rays: Sensitivity Theory Approach and Data of Operational Satellite Monitoring // Physics of Atomic Nuclei. 2021. Vol. 84. No 6. P. 1150-1158. DOI: 10.1134/S1063778821130196
Heck D., Knapp J., Capdevielle J.N., Schatz G., Thouw T. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. Technical Report. Karlsruhe. Forschungszentrum Karlsruhe GmbH. 1998. 90 p.
Lagutin A.A., Raikin R.I., Inoue N., Misaki A. Electron Lateral Distribution in Air Showers: Scaling Formalism and its Implications // Journal of Physics G: Nuclear and Particle Physics. 2002. Vol. 28. P. 1259-1274. DOI: 10.1088/09543899/28/6/309
Lagutin A.A., Raikin R.I., Serebryakova T.L. Air Shower Universality in the Energy Range of 1014 to 1022 eV // Bulletin of the Russian Academy of Sciences Physics. 2013. Vol. 77. No 5. P. 623-625. DOI: 10.3103/S1062873813050353
Apel W.D., Badea A.F., Bekk K., et al. Comparison of Measured and Simulated Lateral Distributions for Electrons and Muons with KASCADE // Astroparticle Physics. 2006. Vol. 24. P. 467-483. DOI: 10.1016/j.astropartphys.2005.10.001
Lagutin A.A., Plyasheshnikov A.V., Goncharov A.I. The Lateral Distribution of the Electrons in the Electromagnetic Air Shower // Nuclear Physics B — Proceedings Supplements. 1998. Vol. 60. P. 161-167. DOI: 10.1016/S0920-5632(97)00511-2
Lagutin A.A., Plyasheshnikov A.V., Melentyeva V.V., et al. Lateral Distribution of Electrons in Air Showers // Nuclear Physics B — Proceedings Supplements. 1999. Vol. 75A. P. 290-292. DOI: 10.1016/S0920-5632(99)00269-8
Copyright (c) 2024 Анатолий Алексеевич Лагутин, Николай Викторович Волков, Артемий Игоревич Ревякин
This work is licensed under a Creative Commons Attribution 4.0 International License.
Izvestiya of Altai State University is a golden publisher, as we allow self-archiving, but most importantly we are fully transparent about your rights.
Authors may present and discuss their findings ahead of publication: at biological or scientific conferences, on preprint servers, in public databases, and in blogs, wikis, tweets, and other informal communication channels.
Izvestiya of Altai State University allows authors to deposit manuscripts (currently under review or those for intended submission to Izvestiya of Altai State University) in non-commercial, pre-print servers such as ArXiv.
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License (CC BY 4.0) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).