Temperature Effect of Spatial Distribution of EAS’s Electron Component of the Tunka-Grande Scintillation Array

УДК 53.08 : 520.16

  • Anatoly A. Lagutin Altai State University, Barnaul, Russia Email: lagutin@theory.asu.ru
  • Nikolay V. Volkov Altai State University, Barnaul, Russia Email: volkov@theory.asu.ru
  • Artemy I. Revyakin Altai State University, Barnaul, Russia Email: artemy507@gmail.com
Keywords: gamma-astronomy, TAIGA observatory, Tunka-Grande scintillation array, spatial distribution of EAS electrons, temperature effect, AIRS/AMSU-ATMS

Abstract

The paper discusses the technology for temperature correction of the Tunka-Grande scintillation array data. The temperature correction of the density spatial distribution function (SDF) of extensive air shower (EAS) electrons is performed using the data obtained from solving two following problems. The first one is the continuous monitoring of the atmosphere temperature profile in the area where the array is located. It is solved using the AIRS/AMSU-ATMS hyperspectral data from the Aqua and NOAA satellites, along with the calculated predictions of the WRF regional weather model. The second one is the computer complex created and developed by the authors to adjust the Tunka-Grande array readings of the registered EAS to the readings of the standard undisturbed atmosphere. The solution to this problem comes from the sensitivity theory (developed at the Altai State University) of cosmic ray fluxes to variations in atmospheric characteristics.

Atmosphere temperature profile variations at the TAIGA observatory location during winter are obtained. It is shown that changes of electron SDFs caused by these variations can exceed ~10 %.

The proposed method of temperature correction helps adjust the Tunka-Grande array readings to the readings of the standard undisturbed atmosphere.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Anatoly A. Lagutin, Altai State University, Barnaul, Russia

Doctor of Sciences in Physics and Mathematics, Professor, Head of the Radiophysics and Theoretical Physics Department

Nikolay V. Volkov, Altai State University, Barnaul, Russia

Candidate of Sciences in Physics and Mathematics, Associate Professor at the Radiophysics and Theoretical Physics Department

Artemy I. Revyakin, Altai State University, Barnaul, Russia

Postgraduate Student of the Radiophysics and Theoretical Physics Department

References

Abbasi R.U., Abe M., Abu-Zayyad T., et al. Study of Ultra-High Energy Cosmic Ray Composition using Telescope Array’s Middle Drum Detector and Surface Array in Hybrid Mode // Astroparticle Physics. 2015. Vol. 64. P. 49–62. DOI: 10.1016/j.astropartphys.2014.11.004

Aab A., Abreu P., Aglietta M., et al. (Pierre Auger Collaboration) Evidence for a Mixed Mass Composition at the 'Ankle' in the Cosmic-Ray Spectrum // Physics Letters B. 2016. Vol. 762. P. 288–295. DOI: 10.1016/j.physletb.2016.09.039

Amenomori M., Bao Y.W., Bi X., et al. (Tibet ASy Collaboration). First Detection of Photons with Energy beyond 100 TeV from an Astrophysical Source // Physical Review Letters. 2019. Vol. 123. Art. No 051101. DOI: 10.1103/ PhysRevLett.123.051101

Abeysekara A.U., Albert A. Alfaro R., et al. (HAWC Collaboration) Multiple Galactic Sources with Emission above 56 TeV Detected by HAWC // Physical Review Letters. 2020. Vol. 124. Art. No 021102. DOI: 10.1103/PhysRevLett.124.021102

Abeysekara A.U., Albert A. Alfaro R., et al. (HAWC Collaboration) HAWC Observations of the Acceleration of Very-High-Energy Cosmic Rays in the Cygnus Cocoon // Nature Astronomy. 2021. Vol. 5. P. 465-471. DOI: 10.1038/ s41550-021-01318-y

Amenomori M., Bao Y.W., Bi X., et al. (Tibet ASy Collaboration). Potential PeVatron Supernova Remnant G106.3+2.7 seen in the Highest-Energy Gamma Rays // Nature Astronomy. 2021. Vol. 5. P. 460-464. DOI: 10.1038/s41550-020-01294-9

Cao Z., Aharonian F.A., An Q., et al. Ultrahigh-energy Photons up to 1.4 Petaelectronvolts from 12 y-ray Galactic Sources // Nature. 2021. Vol. 594. P. 33-36. DOI: 10.1038/ s41586-021-03498-z

Budnev N., Astapov I., Bezyazeekov P. (TAIGA Experiment) TAIGA — A Hybrid Array for High Energy Gamma-ray Astronomy and Cosmic-ray Physics // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2022. Vol. 1039. Art. No 167047. DOI: 10.1016/j.nima.2022.167047

Astapov I.I., Bezyazeekov P.A., Blank M. (TAIGA Experiment) Cosmic-Ray Research at the TAIGA Astrophysical Facility: Results and Plans // Journal of Experimental and Theoretical Physics. 2022. Vol. 134. No 4. P. 469-478. DOI: 10.1134/S1063776122040136

Astapov I., Bezyazeekov P., Bonvech E., et al. (TAIGA Experiment). The TAIGA — a Hybrid Detector Complex in Tunka Valley for Astroparticle Physics, Cosmic Ray Physics and Gamma-Ray Astronomy // Physics of Atomic Nuclei. 2023. Vol. 86. No 4. P. 471-477. DOI: 10.1134/S1063778823040051

Ivanova A.L., Astapov I., Bezyazeekov P. (TAIGA Experiment). Scintillation Experiment on the Study of Cosmic Rays and Gamma Fluxes in the Tunka Valley // Physics of Atomic Nuclei. 2023. Vol. 86. No 4. P. 478-482. DOI: 10.1134/ S1063778823040221

Aumann H.H., Chahine M.T., Gautier C., et al. AIRS/ AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products, and Processing Systems // IEEE Transactions on Geoscience and Remote Sensing. 2003. Vol. 41. P. 253-264. DOI: 10.1109/TGRS.2002.808356

Skamarock W.C., Klemp J.B., Dudhia J., et al. A Description of the Advanced Research WRF Version 4 // NCAR Tech. Note. 2019. 145 p. DOI: 10.5065/1dfh-6p97

Lagutin A.A., Mordvin E.Yu., Volkov N.V., Revyakin A.I. Restoration of the All-Weather Mode of the AIRS/AMSU Hyperspectral System of the AQUA Satellite Using the ATMS Microwave Radiometer of the SUOMI-NPP and NOAA-20 Satellites // Optoelectronics, Instrumentation and Data Processing. 2022. Vol. 58. No 2. P. 180-187. DOI: 10.3103/ S8756699022020066

Weng F., Zou X., Sun N., et al. Calibration of Suomi National Polar-orbiting Partnership Advanced Technology Microwave Sounder // Journal of Geophysical Research: Atmospheres. 2013. Vol. 118. No 11. P. 11187-11200. DOI: 10.1002/jgrd.50840

Goldberg M.D., Kilcoyne H., Cikanek H., Mehta A. Joint Polar Satellite System: The United States Next Generation Civilian Polar-orbiting Environmental Satellite System // Journal of Geophysical Research: Atmosperes. 2013. Vol. 118. Issue 24. P. 13463-13475. DOI: 10.1002/2013JD020389

Лагутин А.А., Учайкин В.В. Метод сопряженных уравнений в теории переноса космических лучей высоких энергий : монография. Барнаул: Изд-во Алт. ун-та, 2013. 293 с.

Lagutin A.A., Goncharov A.I., Raikin R.I., et al. Atmospheric Effects of Electron and Muon Components of Cosmic Rays: Sensitivity Theory Approach and Data of Operational Satellite Monitoring // Physics of Atomic Nuclei. 2021. Vol. 84. No 6. P. 1150-1158. DOI: 10.1134/S1063778821130196

Heck D., Knapp J., Capdevielle J.N., Schatz G., Thouw T. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. Technical Report. Karlsruhe. Forschungszentrum Karlsruhe GmbH. 1998. 90 p.

Lagutin A.A., Raikin R.I., Inoue N., Misaki A. Electron Lateral Distribution in Air Showers: Scaling Formalism and its Implications // Journal of Physics G: Nuclear and Particle Physics. 2002. Vol. 28. P. 1259-1274. DOI: 10.1088/09543899/28/6/309

Lagutin A.A., Raikin R.I., Serebryakova T.L. Air Shower Universality in the Energy Range of 1014 to 1022 eV // Bulletin of the Russian Academy of Sciences Physics. 2013. Vol. 77. No 5. P. 623-625. DOI: 10.3103/S1062873813050353

Apel W.D., Badea A.F., Bekk K., et al. Comparison of Measured and Simulated Lateral Distributions for Electrons and Muons with KASCADE // Astroparticle Physics. 2006. Vol. 24. P. 467-483. DOI: 10.1016/j.astropartphys.2005.10.001

Lagutin A.A., Plyasheshnikov A.V., Goncharov A.I. The Lateral Distribution of the Electrons in the Electromagnetic Air Shower // Nuclear Physics B — Proceedings Supplements. 1998. Vol. 60. P. 161-167. DOI: 10.1016/S0920-5632(97)00511-2

Lagutin A.A., Plyasheshnikov A.V., Melentyeva V.V., et al. Lateral Distribution of Electrons in Air Showers // Nuclear Physics B — Proceedings Supplements. 1999. Vol. 75A. P. 290-292. DOI: 10.1016/S0920-5632(99)00269-8

Published
2024-04-05
How to Cite
Lagutin A. A., Volkov N. V., Revyakin A. I. Temperature Effect of Spatial Distribution of EAS’s Electron Component of the Tunka-Grande Scintillation Array // Izvestiya of Altai State University, 2024, № 1(135). P. 30-36 DOI: 10.14258/izvasu(2024)1-03. URL: http://izvestiya.asu.ru/article/view/%282024%291-03.